The group of ministers (GoM) report on “government communication” has recommended that the government promote “soft topics” in the media like “yoga” and “tigers”. We can only speculate what this means, and that shouldn’t be hard. The overall spirit of the document is insecurity and paranoia, manifested as fantasies of reining in the country’s independent media into doing the government’s bidding. The promotion of “soft” stories is in line with this aspiration – “soft” here can only mean stories that don’t criticise the government, its actions or policies, and be like ‘harmless entertainment’ for a politically inert audience. It’s also no coincidence that the two examples on offer of such stories skirt the edges of health and environmental journalism; other examples are sure to include reports of scientific discoveries.
Science is closely related to the Indian state in many ways. The current government in particular, in power since 2014, has been promoting application-oriented R&D (a bias especially visible in budgetary allocations); encouraging ill-prepared research facilities to self-finance; privileging certain private interests (esp. the Reliance and Adani groups) vis-à-vis natural resources like coal, coastal zones and spectrum allocations; pillaging India’s ecological commons for industrialisation; promoting pseudoscience (which further disempowers those closer to society’s margins); interfering at universities by appointing vice-chancellors friendly to the ruling party (and if that doesn’t work, jailing students on ridiculous charges that include dissent); curtailing academic freedom; and hounding after scientists and institutions that threaten its preferred narratives.
With this in mind, it’s important for science journalism outlets and science journalists to not become complicit – inadvertently or otherwise – in the state project to “soften” science, and start reporting, if they aren’t already, on issues with a closer eye on their repercussions on the wider society. The idea that science journalism can or should be objective the way science is is nonsensical because the idea that science is an objective enterprise is nonsensical. The scientific method is a technique to obtain information about the natural universe while steadily subtracting the influence of human biases and other limitations. However, what scientists choose to study, how they design their studies and what is ultimately construed to be knowledge are all deeply human enterprises.
On top of this, science journalism is driven by journalists’ sense of good and bad: We write favourably about the former and argue against the latter. We write about some telescope unravelling a long-standing cosmogonic problem and also publish an article calling out homeopathy’s bullshit. We write a scientific paper that uses ingenious methods to prove its point and also call out Indian academia as an unsafe space for queer-trans people.
Some have advanced a defence that simply focusing on “good science” can inculcate in the audience a sense of what is “worthy” and “desirable” while denying “bad science” the platform and publicity it seeks. This is objectionable on two counts.
First, who decides what is “worthy”? For example, some scientists, especially in the ‘senior’ cadre and the more influential and/or powerful for it, make this choice by deferring to the wisdom of scientific journals, chosen according to their impact factors, and what the journals have deemed worthy of publishing. But abiding by this heuristic only means we continue to participate in and extend the lifetime of the existing ways of knowledge production that privilege white scientists, male scientists and richer scientists – and sensational positive results on topics that the scientists staffing the journals’ editorial boards would like to focus on.
Second, being limited to goodness at a time when badness abounds is bad, at least severely tone-deaf (but I’m disinclined to be so charitable). Very broadly, that science is inherently amoral is a pithy factoid by this point. There have been far too many incidents in history for anyone to still be able to overlook, in good faith, the fact that science’s prescriptions unguided by human morals and values are quite likely to lead to humanitarian disasters. We may even be living through one such. Scientists’ rapid and successful development of new vaccines against a new pathogen was followed by a global rush to acquire enough doses. But the world’s industrial and economic powers have ensured that the strongest among them have enough to vaccine their entire populations more than once, have blocked petitions at global fora to loosen patents on these vaccines to expand manufacturing and distribution, have forced desperate countries to purchase doses at prices higher than those for developed blocs like the EU, and have allowed corporate behemoths to make monumental profits even as they force third-world nations to pledge sovereign assets to secure supplies. It’s fallacious to claim scientific labour makes the world a better place when the fruits of such labour must still be filtered, like so much else, through the capitalist sieve.
There are many questions for the science journalist to consider here: why have some communities in certain countries been affected more than others? Why is there so little data on the vaccines’ consequences for pregnant women? Do we know enough to discuss the pandemic’s effects on women? Why, at a time when so many scientists and engineers were working to design new ventilators, was there no unified standard to ensure usability? If the world has demonstrated that it’s possible to design, test, manufacture and administer vaccines against a new virus in such a short time, why have we been waiting so long for effective defences against neglected tropical diseases? How do the racial, gender and ethnic identifies of clinical trials affect trial outcomes? Is it ethical for countries that hosted vaccine clinical trials to get the first doses? Should we compulsorily prohibit patents on drugs, therapies and devices important to ending pandemics? If so, what might the consequences be for drug development? And what good is a vaccine if we can’t also ensure all the world’s 7.x billion people can be vaccinated simultaneously?
The pandemic isn’t a particularly ‘easy’ example either. For example, if the government promises to develop new supercomputers, who can use them and what problems will they be used to solve? How can we improve the quality and quantity of research conducted at institutes funded by state governments? Why do so many scientists at public universities plagiarise scientific papers? On what basis are the winners of the S.S. Bhatnagar Award chosen? Should we formally do away with subscription-funded scientific journals in favour of open-access publishing, overlay journals and post-publication peer-review? Is methane really a “clean fuel” even though its extraction and transportation will impose a considerable dirty cost? Why can’t we have more GM foods in the market even though the science is ‘good’? Is it worthwhile to invest Rs 10,000 crore in a human spaceflight programme that lacks long-term vision? And so forth.
Simply focusing on “good science” at our present time is not enough. I also reject the argument that it’s not for science journalists to protect or defend science simply because science, whatever it’s interpreted to mean, is not the preserve of scientists. As an enterprise rooted in its famous method, science is a tool of empowerment: it encourages discovery and deliberation; I’m not sure if it’s fair to say it encourages dissent as well but there is evidence that science can accommodate it without resorting to violence and subjugation.
It’s not for nothing that I’m more comfortable holding up an aspirin tablet for someone with a headache than a jar of leaves from the Patanjali Ayurved stable: being able to know how and why something works is power in the same way knowing how the pharmaceutical industry manipulates markets, how to file an RTI application, what makes an FIR valid or invalid, what the election commission’s model code of conduct stipulates or what kind of land a mall can be built on is power. All of it represents control, especially the ability to say ‘no’ and mean it.
This is ultimately what the GoM report fantasises about – and what the present government desires: the annulment of individual and institutional resistance, one subset of which is the neutralisation of science’s ability to provoke questions about atoms and black holes as much as about the circumstances in which scientists study them, about the nature, utility and purpose of knowledge, and the relationships between science, capital and the state.
Addendum
In January 2020, the Office of the Principal Scientific Adviser (PSA) to the Government of India organised a meeting with science journalists and communicators from around the country to discuss what the two parties could do for each other. Us journalists and communicators aired a lot of grievances during the meeting as well as suggestions on fixing long-standing and/or particularly thorny problems (some notes here).
In light of the government’s renewed attention on curbing press freedom and ludicrous suggestions in the report, such as one by S. Gurumurthy that the news should be a “mixture of truth and untruth”, I’m not sure where that leaves the PSA’s plans for future consultation nor – considering parts of the report seemingly manufactured consent – whether good-faith consultation will be possible going ahead. I can only hope that members of this community at least evoke and keep the faith.