Necessity and sufficiency

With apologies for recalling horrible people early in the day: I chanced upon this article quoting Lawrence Krauss talking about his friend Jeffrey Epstein from April 2011, and updated in July 2019. Excerpt (emphasis added):

Renowned scientists whose research Epstein has generously funded through the years also stand by him. Professor Lawrence Krauss, a theoretical physicist …, has planned scientific conferences with Epstein in St. Thomas and remained close with him throughout his incarceration. “If anything, the unfortunate period he suffered has caused him to really think about what he wants to do with his money and his time, and support knowledge,” says Krauss. “Jeffrey has surrounded himself with beautiful women and young women but they’re not as young as the ones that were claimed. As a scientist I always judge things on empirical evidence and he always has women ages 19 to 23 around him, but I’ve never seen anything else, so as a scientist, my presumption is that whatever the problems were I would believe him over other people.” Though colleagues have criticized him over his relationship with Epstein, Krauss insists, “I don’t feel tarnished in any way by my relationship with Jeffrey; I feel raised by it.”

Well, of course he felt raised by his friendship with Epstein. But more importantly, the part in bold is just ridiculous, and I hope Krauss was suitably slammed for saying such a stupid thing at the time.a It’s a subtle form of scientism commonly found in conversations that straddle two aggressively differing points of view – such as the line between believing and disbelieving the acts of a convicted sex offender or between right- and left-wing groups in India.

Data is good, even crucial, as the numerical representation of experimental proof, and for this reason often immutable. But an insistence on data before anything else is foolish because it presupposes that the use of the scientific method – implied by the production and organisation of data – is a necessary as well as sufficient condition to ascertain an outcome. But in truth, science is often necessary but almost never sufficient.

Implying in turn that all good scientists should judge everything by empirical evidence isn’t doing science or scientists any favours. Instead, such assertions might abet the impression of a scientist as someone unmoved by sociological, spiritual or artistic experiences, and science as a clump of methods all of which together presume to make sense of everything you will ever encounter, experience or infer. However, it’s in fact a body of knowledge obtained by applying the scientific method to study natural phenomena.

Make what you will of science’s abilities and limitations based on this latter description, and not Krauss’s insular and stunted view that – in hindsight – may have been confident in its assertion if only because it afforded Krauss a way to excuse himself. And it is because of people like him (necessity), who defer to scientific principles even as they misappropriate and misuse these principles to enact their defensive ploys, together with the general tendency among political shills to use overreaching rhetoric and exaggerated claims of harm (sufficiency), that the scientific enterprise itself takes a hit in highly polarised debates word-wars.

a. If Krauss insists on sticking to his scientistic guns, it might be prudent to remind him of counterfactual definiteness.

A sympathetic science

If you feel the need to respond, please first make sure you have read the post in full.

I posted the following tweet a short while ago:

With reference to this:

Which in turn was with reference to this:

But a few seconds after publishing it, I deleted the tweet because I realised I didn’t agree with its message.

That quote by Isaac Asimov is a favourite if only because it contains in those words a bigger idea that expands voraciously the moment it comes in contact with the human mind. Yes, there is a problem with understanding ignorance and knowledge as two edges of the same blade, but somewhere in this mixup, a half-formed aspiration to rational living lurks in silence.

The author of another popular tweet commenting on the same topic did not say anything more than reproduce Kiran Bedi’s comment, issued after she shared her controversial ‘om’ tweet on January 4 (details here), that the chant is “worth listening to even if it’s fake”; the mocking laughter was implied, reaffirmed by invoking the name of the political party Bedi is affiliated to (the BJP – which certainly deserves the mockery).

However, I feel the criticism from thousands of people around the country does not address the part of Bedi’s WhatsApp message that reaches beyond facts and towards sympathy. Granted, it is stupid to claim that that is what the Sun sounds like, just as Indians’ obsession with NASA is both inexplicable and misguided. That Bedi is a senior government official, a member of the national ruling party and has 12 million followers on Twitter doesn’t help.

But what of Bedi suggesting that the controversy surrounding the provenance of the message doesn’t have to stand in the way of enjoying the message itself? Why doesn’t the criticism address that?

Perhaps it is because people think it is irrelevant, that it is simply the elucidation of a subjective experience that either cannot be disputed or, more worryingly, is not worth engaging over. If it is the latter, then I fear the critics harbour an idea that what science – as the umbrella term for the body of knowledge obtained by the application of a certain method and allied practices – is not concerned with is not worth being concerned about. Even if all of the critics in this particular episode do not harbour this sentiment, I know from personal experience that there are even more out there who do.

After publishing my tweet, I realised that Bedi’s statement that “it is worth listening to even if it’s fake” is not at odds with physicist Dibyendu Nandi’s words: that chanting the word ‘om’ is soothing and that its aesthetic benefits (if not anything greater) don’t need embellishment, certainly not in terms of pseudoscience and fake news. In fact, Bedi has admitted it is fake, and as a reasonable, secular and public-spirited observer, I believe that is all I can ask for – rather, that is all I can ask for from her in the aftermath of her regrettable action.

If I had known what was going to happen earlier, my expectation would still have been limited – in a worst case scenario in which she insists on sharing the chant – to ask her to qualify the NASA claim as being false. Twelve million followers is nothing to be laughed at.

But what I can ask of others (including myself) is this: mocking Bedi is fine, but what’s the harm in chanting the ‘om’ even if the claims surrounding it are false? What’s the harm in asserting that?

If the reply is, “There is no harm” – okay.

If the reply is, “There is no harm plus that is not in dispute” or that “There is harm because the assertion is rooted in a false, and falsifiable, premise” – I would say, “Maybe the assertion should be part of the conversation, such that the canonical response can be changed from <mockery of getting facts wrong>[1] to <mockery of getting facts wrong> + <discussing the claimed benefits of chanting ‘om’ and/or commenting on the ways in which adherence to factual knowledge can contribute to wellbeing>.”

The discourse of rational aspiration currently lacks any concern for the human condition, and while scientificity, or scientificness, has been becoming a higher virtue by the day, it does not appear to admit that far from having the best interests of the people at heart, it presumes that whatever sprouts from its cold seeds should be nutrition enough.[2]

[1] The tone of the response is beyond the scope of this post.

[2] a. If you believe this is neither science’s purpose nor responsibility, then you must agree it must not be wielded sans the clarification either that it represents an apathetic knowledge system or that the adjudication of factitude does not preclude the rest of Bedi’s message. b. Irrespective of questions about science’s purpose, could this be considered to be part of the purpose of science communication? (This is not a rhetorical question.)

The rationalists' eclipse

The annular solar eclipse over South India on December 26 provided sufficient cause for casual and/or inchoate rationalism to make a rare public appearance – rarer than the average person who had decided to stay indoors for the duration of the event thanks to superstitious beliefs. Scientists and science communicators organised or participated in public events where they had arranged for special (i.e. protective) viewing equipment and created enough space for multiple people to gather and socialise.

However, some of these outings, spilling over into the social media, also included actions and narratives endeavouring to counter superstitions but overreaching and stabbing at the heart of non-scientific views of the world.

The latter term – ‘non-scientific’ – has often been used pejoratively but is in fact far from deserving of derision or, worse, pity. The precepts of organised religion encompass the most prominent non-scientific worldview but more than our tragic inability to imagine that these two magisteria could exist in anything but opposition to each other, the bigger misfortune lies with presuming science and religion are all there is. The non-scientific weltanschauung includes other realms, so to speak, especially encompassing beliefs that organised religion and its political economy hegemonise. Examples include the traditions of various tribal populations around the world, especially in North America, Latin America, Africa, Central and South Asia, and Australia.

There is an obvious difference between superstitious beliefs devised to suppress a group or population and the framework of tribal beliefs within which their knowledge of the world is enmeshed. It should be possible to delegitimise the former without also delegitimising the latter. Assuming the charitable view that some find it hard to discern this boundary, the simplest way to not trip over it is to acknowledge that most scientific and non-scientific beliefs can peacefully coexist in individual minds and hearts. And that undermining this remarkably human ability is yet another kind of proselytisation.

Obviously this is harder to realise in what we conceive as the day-to-day responsibilities of science communication, but that doesn’t mean we must put up with a lower bar for the sort of enlightenment we want India to stand for fifty or hundred years from now. Organising public eat-a-thons during a solar eclipse, apparently to dispel the superstitious view that consuming foods when the Sun has been so occluded is bad for health, is certainly not a mature view of the problem.

In fact, such heavy-handed attempts to drive home the point that “science is right” and “whatever else you think is wrong” are effects of a distal cause: a lack of sympathetic concern for the wellbeing of a people – which is also symptomatic of a half-formed, even egotistical, rationalism entirely content with its own welfare. Rescuing people from ideas that would enslave them could temporarily empower them but transplanting them to a world where knowledgeability rules like a tyrant, unconcerned with matters he cannot describe, is only more of the same by a different name.

B.R. Ambedkar and E.V. Ramaswamy Naicker, a.k.a. Periyar, wanted to dismantle organised religion because they argued that such oppressive complexes pervaded its entire body. Their ire was essentially directed against autocratic personal governance that expected obedience through faith. In India, unless you’re a scientist and/or have received a good education, and can read English well enough to access the popular and, if need be, the technical literature, science is also reduced to a system founded on received knowledge and ultimately faith.

There is a hegemony of science as well. Beyond the mythos of its own cosmology (to borrow Paul Feyerabend’s quirky turn of phrase in Against Method), there is also the matter of who controls knowledge production and utilisation. In Caliban and the Witch (1998), Sylvia Federici traces the role of the bourgeoisie in expelling beliefs in magic and witchcraft in preindustrial Europe only to prepare the worker’s body to accommodate the new rigours of labour under capitalism. She writes, “Eradicating these practices was a necessary condition for the capitalist rationalisation of work, since magic appeared as an illicit form of power and an instrument to obtain what one wanted without work, that is, a refusal of work in action. ‘Magic kills industry,’ lamented Francis Bacon…”.

To want to free another human from whatever shackles bind them is the sort of virtuous aspiration that is only weakened by momentary or superficial focus. In this setup, change – if such change is required at all costs – must be enabled from all sides, instead of simply a top-down reformatory jolt delivered by pictures of a bunch of people breaking their fast under an eclipsed Sun.

Effective science communication could change the basis on which people make behavioural decisions but to claim “all myths vanished” (as one science communicator I respect and admire put it) is disturbing. Perhaps in this one instance, the words were used in throwaway fashion, but how many people even recognise a need to moderate their support for science this way?

Myths, as narratives that harbour traditional knowledge and culturally unique perspectives on the natural universe, should not vanish but be preserved. A belief in the factuality of this or that story could become transformed by acknowledging that such stories are in fact myths and do not provide a rational basis for certain behavioural attitudes, especially ones that might serve to disempower — as well as that the use of the scientific method is a productive, maybe even gainful, way to discover the world.

But using science communication as a tool to dismantle myths, instead of tackling superstitious rituals that (to be lazily simplistic) suppress the acquisition of potentially liberating knowledge, is to create an opposition that precludes the peaceful coexistence of multiple knowledge systems. In this setting, science communication perpetuates the misguided view that science is the only useful way to acquire and organise our knowledge — which is both ahistorical and injudicious.

Scientism is not ‘nonsense’

The @realscientists rocur account on Twitter took a surprising turn earlier today when its current curator, Teresa Ambrosio, a chemist, tweeted the following:

If I had to give her the benefit of doubt, I’d say she was pointing this tweet at the hordes of people – especially Americans – whose conspiratorial attitude towards vaccines and immigrants is founded entirely on their personal experiences being at odds with scientific knowledge. However, Ambrosio wasn’t specific, so I asked her:

The responses to my tweet, encouraged in part by Ambrosio herself, were at first dominated by (too many) people who seemed to agree, broadly, that science is an apolitical endeavour that could be cleanly separated from the people who practice it and that science has nothing to do with the faulty application of scientific knowledge. However, the conversation rapidly turned after one of the responders called scientism “nonsense” – a stance that would rankle not just the well-informed historian of science but in fact so many people in non-developed nations where scientific knowledge is often used to legitimise statutory authority.

I recommend reading the whole conversation, especially if what you’re looking for is a good and sufficiently well-referenced summary of a) why scientism is anything but nonsense; b) why science is not apolitical; and c) how scientism is rooted in the need to separate science and the scientist.

Thinking ape. Credit: Pixel-mixer/pixabay

The worst poem ever

How does feel to write a story and then, just like that, have everyone read it as well as be interested in reading it?

How would it feel to not have to hope quasi-desperately that a story does well after having spent hours – if not days – on it?

How would it feel to not slog and slog, telling yourself that you just need to be proud of covering a beat few others have chosen to?

“Good journalism can only emerge from being a good citizen” – but is there a way to tell what kind of citizenship is valuable and what kind not?

Of course, I’m also asking myself questions about why it is that I chose to be a journalist and then a science journalist.

The first one doesn’t have a short answer and it’s probably also too personal to be discussing on my blog. So let’s leave that for another day, or another forum.

Why science journalist? Because it’s like Kip Thorne has said: it was the pleasure of doing “something in which there was less competition and more opportunity to do something unique.”

When I tell people I’m a science journalist, a common response goes like this: “I’ve distanced myself from science and math since school”. And it goes with a smile. I smile, too.

Except I’m not amused. This mental block that many people have I’ve found is the Indian science journalist’s greatest enemy – at least it’s mine.

What makes it so great is that, to most people, it’s a class- and era-specific ‘survival skill’ they’ve adopted that has likely made their lives more enjoyable.

And we all know how hard it is give fucks about the wonders that unknown unknowns can hold. It’s impossible almost by definition.

Then there are also so many fucks demanded of us to be given to the human condition.

But Ed Yong’s tweet I will never forget, though I do wish I’d faved it: there’s so much more to science than what applies to being human.

Of course, there’s the other, much simpler reason I’m thinking all this, and so likelier to be true: I’m just a lousy science journalist, writing the worst poem ever.

Featured image credit: Pixel-mixer/pixabay.

 

The metaphorical transparency of responsible media

Featured image credit: dryfish/Flickr, CC BY 2.0.

I’d written a two-part essay (although they were both quite short; reproduced in full below) on The Wire about what science was like in 2016 and what we can look forward to in 2017. The first part was about how science journalism in India is a battle for relevance, both within journalistic circles and among audiences. The second was about how science journalism needs to be treated like other forms of journalism in 2017, and understood to be afflicted with the same ills that, say, political and business journalism are.

Other pieces on The Wire that had the same mandate, of looking back and looking forward, stuck to being roundups and retrospective analyses. My pieces were retrospective, too, but they – to use the parlance of calculus – addressed the second derivative of science journalism, in effect performing a meta-analysis of the producers and consumers of science writing. This blog post is a quick discussion (or rant) of why I chose to go the “science media” way.

We in India often complain about how the media doesn’t care enough to cover science stories. But when we’re looking back and forward in time, we become blind to the media’s efforts. And looking back is more apparently problematic than is looking forward.

Looking back is problematic because our roundup of the ‘best’ science (the ‘best’ being whatever adjective you want it to be) from the previous year is actually a roundup of the ‘best’ science we were able to discover or access from the previous year. Many of us may have walled ourselves off into digital echo-chambers, sitting within not-so-fragile filter bubbles and ensuring news we don’t want to read about doesn’t reach us at all. Even so, the stories that do reach us don’t make up the sum of all that is available to consume because of two reasons:

  1. We practically can’t consume everything, period.
  2. Unless you’re a journalist or someone who is at the zeroth step of the information dissemination pyramid, your submission to a source of information is simply your submission to another set of filters apart from your own. Without these filters, finding something you are looking for on the web would be a huge problem.

So becoming blind to media efforts at the time of the roundup is to let journalists (who sit higher up on the dissemination pyramid) who should’ve paid more attention to scientific developments off the hook. For example, assuming things were gloomy in 2016 is assuming one thing given another thing (like a partial differential): “while the mood of science news could’ve been anything between good and bad, it was bad” GIVEN “journalists mostly focused on the bad news over the good news”. This is only a simplistic example: more often than not, the ‘good’ and ‘bad’ can be replaced by ‘significant’ and ‘insignificant’. Significance is also a function of media attention. At the time of probing our sentiments on a specific topic, we should probe the information we have as well as how we acquired that information.

Looking forward without paying attention to how the media will likely deal with science is less apparently problematic because of the establishment of the ideal. For example, to look forward is also to hope: I can say an event X will be significant irrespective of whether the media chooses to cover it (i.e., “it should ideally be covered”); when the media doesn’t cover the event, then I can recall X as well as pull up journalists who turned a blind eye. In this sense, ignoring the media is to not hold its hand at the beginning of the period being monitored – and it’s okay. But this is also what I find problematic. Why not help journalists look out for an event when you know it’s going to happen instead of relying on their ‘news sense’, as well as expecting them to have the time and attention to spend at just the right time?

Effectively: pull us up in hindsight – but only if you helped us out in foresight. (The ‘us’ in this case is, of course, #notalljournalists. Be careful with whom you choose to help or you could be wasting your time.)


Part I: Why Independent Media is Essential to Good Science Journalism

What was 2016 like in science? Furious googling will give you the details you need to come to the clinical conclusion that it wasn’t so bad. After all, LIGO found gravitational waves; an Ebola vaccine was readied; ISRO began tests of its reusable launch vehicle; the LHC amassed particle collisions data; the Philae comet-hopping mission ended; New Horizons zipped past Pluto; Juno is zipping around Jupiter; scientists did amazing (but sometimes ethically questionable) things with CRISPR; etc. But if you’ve been reading science articles throughout the year, then please take a step back from everything and think about what your overall mood is like.

Because, just as easily as 2016 was about mega-science projects doing amazing things, it was also about climate-change action taking a step forward but not enough; about scientific communities becoming fragmented; about mainstream scientific wisdom becoming entirely sidelined in some parts of the world; about crucial environmental protections being eroded; about – undeniably – questionable practices receiving protection under the emotional cover of nationalism. As a result, and as always, it is difficult to capture what this year was to science in a single mood, unless that mood in turn captures anger, dismay, elation and bewilderment at various times.

So, to simplify our exercise, let’s do that furious googling – and then perform a meta-analysis to reflect on where each of us sees fit to stand with respect to what the Indian scientific enterprise has been up to this year. (Note: I’m hoping this exercise can also be a referendum on the type of science news The Wire chose to cover this year, and how that can be improved in 2017.) The three broad categories (and sub-categories) of stories that The Wire covered this year are:

GOOD BAD UGLY
Different kinds of ISRO rockets – sometimes with student-built sats onboard – took off Big cats in general, and leopards specifically, had a bad year Indian scientists continued to plagiarise and engage in other forms of research misconduct without consequence
ISRO decided to partially privatise PSLV missions by 2020 The JE/AES scourge struck again, their effects exacerbated by malnutrition The INO got effectively shut down
LIGO-India collaboration received govt. clearance; Indian scientists of the LIGO collaboration received a vote of confidence from the international community PM endorsed BGR-34, an anti-diabetic drug of dubious credentials Antibiotic resistance worsened in India (and other middle-income nations)
We supported ‘The Life of Science’ Govt. conceived misguided culling rules India succumbed to US pressure on curtailing generic drugs
Many new species of birds/animals discovered in India Ken-Betwa river linkup approved at the expense of a tiger sanctuary Important urban and rural waterways were disrupted, often to the detriment of millions
New telescopes were set up, further boosting Indian astronomy; ASTROSAT opened up for international scientists Many conservation efforts were hampered – while some were mooted that sounded like ministers hadn’t thought them through Ministers made dozens of pseudoscientific claims, often derailing important research
Otters returned to their habitats in Kerala and Goa A politician beat a horse to its death Fake-science-news was widely reported in the Indian media
Janaki Lenin continued her ‘Amazing Animals’ series Environmental regulations turned and/or stayed anti-environment Socio-environmental changes resulting from climate change affect many livelihoods around the country
We produced monthly columns on modern microbiology and the history of science We didn’t properly respond to human-wildlife conflicts Low investments in public healthcare, and focus on privatisation, short-changed Indian patients
Indian physicists discovered a new form of superconductivity in bismuth GM tech continues to polarise scientists, social scientists and activists Space, defence-research and nuclear power establishments continued to remain opaque
/ Conversations stuttered on eastern traditions of science /

I leave it to you to weigh each of these types of stories as you see fit. For me – as a journalist – science in the year 2016 was defined by two parallel narratives: first, science coverage in the mainstream media did not improve; second, the mainstream media in many instances remained obediently uncritical of the government’s many dubious claims. As a result, it was heartening on the first count to see ‘alternative’ publications like The Life of Science and The Intersection being set up or sustained (as the case may be).

On the latter count: the media’s submission paralleled, rather directly followed, its capitulation to pro-government interests (although some publications still held out). This is problematic for various reasons, but one that is often overlooked is that the “counterproductive continuity” that right-wing groups stress upon – between traditional wisdom and knowledge derived through modern modes of investigation – receives nothing short of a passive endorsement by uncritical media broadcasts.

From within The Wire, doing a good job of covering science has become a battle for relevance as a result. And this is a many-faceted problem: it’s as big a deal for a science journalist to come upon and then report a significant story as finding the story itself in the first place – and it’s as difficult to get every scientist you meet to trust you as it is to convince every reader who visits The Wire to read an article or two in the science section per visit. Fortunately (though let it not be said that this is simply a case of material fortunes), the ‘Science’ section on The Wire has enjoyed both emotional and financial support. To show for it, we have had the privilege of overseeing the publication of 830 articles, and counting, in 2016 (across science, health, environment, energy, space and tech). And I hope those who have written for this section will continue to write for it, even as those who have been reading this section will continue to read it.

Because it is a battle for relevance – a fight to be noticed and to be read, even when stories have nothing to do with national interests or immediate economic gains – the ideal of ‘speaking truth to power’ that other like-minded sections of the media cherish is preceded for science journalism in India by the ideals of ‘speaking’ first and then ‘speaking truth’ second. This is why an empowered media is as essential to the revival of that constitutionally enshrined scientific temperament as are productive scientists and scientific institutions.

The Wire‘s journalists have spent thousands of hours this year striving to be factually correct. The science writers and editors have also been especially conscientious of receiving feedback at all stages, engaging in conversations with our readers and taking prompt corrective action when necessary – even if that means a retraction. This will continue to be the case in 2017 as well in recognition of the fact that the elevation of Indian science on the global stage, long hailed to be overdue, will directly follow from empowering our readers to ask the right questions and be reasonably critical of all claims at all times, no matter who the maker.

Part II: If You’re Asking ‘What To Expect in Science in 2017’, You Have Missed the Point

While a science reporter at The Hindu, this author conducted an informal poll asking the newspaper’s readers to speak up about what their impressions were of science writing in India. The answers, received via email, Twitter and comments on the site, generally swung between saying there was no point and saying there was a need to fight an uphill battle to ‘bring science to everyone’. After the poll, however, it still wasn’t clear who this ‘everyone’ was, notwithstanding a consensus that it meant everyone who chanced upon a write-up. It still isn’t clear.

Moreover, much has been written about the importance of science, the value of engaging with it in any form without expectation of immediate value and even the usefulness of looking at it ‘from the outside in’ when the opportunity arises. With these theses in mind (which I don’t want to rehash; they’re available in countless articles on The Wire), the question of “What to expect in science in 2017?” immediately evolves into a two-part discussion. Why? Because not all science that happens is covered; not all science that is covered is consumed; and not all science that is consumed is remembered.

The two parts are delineated below.

What science will be covered in 2017?

Answering this question is an exercise in reinterpreting the meaning of ‘newsworthiness’ subject to the forces that will assail journalism in 2017. An immensely simplified way is to address the following factors: the audience, the business, the visible and the hidden.

The first two are closely linked. As print publications are shrinking and digital publications growing, a consideration of distribution channels online can’t ignore the social media – specifically, Twitter and Facebook – as well as Google News. This means that an increasing number of younger readers are available to target, which in turn means covering science in a way that interests this demographic. Qualities like coolness and virality will make an item immediately sellable to marketers whereas news items rich with nuance and depth will take more work.

Another way to address the question is in terms of what kind of science will be apparently visible, and available for journalists to easily chance upon, follow up and write about. The subjects of such writing typically are studies conducted and publicised by large labs or universities, involving scientists working in the global north, and often on topics that lend themselves immediately to bragging rights, short-lived discussions, etc. In being aware of ‘the visible’, we must be sure to remember ‘the invisible’. This can be defined as broadly as in terms of the scientists (say, from Latin America, the Middle East or Southeast Asia) or the studies (e.g., by asking how the results were arrived at, who funded the studies and so forth).

On the other hand, ‘the hidden’ is what will – or ought to – occupy those journalists interested in digging up what Big X (Pharma, Media, Science, etc.) doesn’t want publicised. What exactly is hidden changes continuously but is often centred on the abuse of privilege, the disregard of those we are responsible for and, of course, the money trail. The issues that will ultimately come to define 2017 will all have had dark undersides defined by these aspects and which we must strive to uncover.

For example: with the election of Donald Trump, and his bad-for-science clique of bureaucrats, there is a confused but dawning recognition among liberals of the demands of the American midwest. So to continue to write about climate change targeting an audience composed of left-wingers or east coast or west coast residents won’t work in 2017. We must figure out how to reach across the aisle and disabuse climate deniers of their beliefs using language they understand and using persuasions that motivate them to speak to their leaders about shaping climate policy.

What will be considered good science journalism in 2017?

Scientists are not magical creatures from another world – they’re humans, too. So is their collective enterprise riddled with human decisions and human mistakes. Similarly, despite all the travails unique to itself, science journalism is fundamentally similar to other topical forms of journalism. As a result, the broader social, political and media trends sweeping around the globe will inform novel – or at least evolving – interpretations of what will be good or bad in 2017. But instead of speculating, let’s discuss the new processes through which good and bad can be arrived at.

In this context, it might be useful to draw from a blog post by Jay Rosen, a noted media critic and professor of journalism at New York University. Though the post focuses on what political journalists could do to adapt to the Age of Trump, its implied lessons are applicable in many contexts. More specifically, the core effort is about avoiding those primary sources of information (out of which a story sprouts) the persistence with which has landed us in this mess. A wildly remixed excerpt:

Send interns to the daily briefing when it becomes a newsless mess. Move the experienced people to the rim. Seek and accept offers to speak on the radio in areas of Trump’s greatest support. Make common cause with scholars who have been there. Especially experts in authoritarianism and countries when democratic conditions have been undermined, so you know what to watch for— and report on. (Creeping authoritarianism is a beat: who do you have on it?). Keep an eye on the internationalization of these trends, and find spots to collaborate with journalists across borders. Find coverage patterns that cross [the aisle].

And then this:

[Washington Post reporter David] Fahrenthold explains what he’s doing as he does it. He lets the ultimate readers of his work see how painstakingly it is put together. He lets those who might have knowledge help him. People who follow along can see how much goes into one of his stories, which means they are more likely to trust it. … He’s also human, humble, approachable, and very, very determined. He never goes beyond the facts, but he calls bullshit when he has the facts. So impressive are the results that people tell me all the time that Fahrenthold by himself got them to subscribe.

Transparency is going to matter more than ever in 2017 because of how the people’s trust in the media was eroded in 2016. And there’s no reason science journalism should be an exception to these trends – especially given how science and ideology quickly locked horns in India following the disastrous Science Congress in 2015. More than any other event since the election of the Bharatiya Janata Party to the centre, and much like Trump’s victory caught everyone by surprise, the 2015 congress really spotlighted the extent of rational blight that had seeped into the minds of some of India’s most powerful ideologues. In the two years since, the reluctance of scientists to step forward and call bullshit out has also started to become more apparent, as a result exposing the different kinds of undercurrents that drastic shifts in policies have led to.

So whatever shape good science journalism is going to assume in 2017, it will surely benefit by being more honest and approachable in its construction. As will the science journalist who is willing to engage with her audience about the provenance of information and opinions capable of changing minds. As Jeff Leek, an associate professor at the Johns Hopkins Bloomberg School of Public Health, quoted (statistician Philip Stark) on his blog: “If I say just trust me and I’m wrong, I’m untrustworthy. If I say here’s my work and it’s wrong, I’m honest, human, and serving scientific progress.”

Here’s to a great 2017! 🙌🏾

TIFR's superconductor discovery: Where are the reports?

Featured image: The Meissner effect: a magnet levitating above a superconductor. Credit: Mai-Linh Doan/Wikimedia Commons, CC BY-SA 3.0.

On December 2, physicists from the Tata Institute of Fundamental Research (TIFR) announced an exciting discovery: that the metal bismuth becomes a superconductor at a higher temperature than predicted by a popular theory. Granted the theory has had its fair share of exceptions, the research community is excited about this finding because of the unique opportunities it presents in terms of learning more, doing more. But yeah, even without the nuance, the following is true: that TIFR physicists have discovered a new form of superconductivity, in the metal bismuth. I say this as such because not one news outlet in India, apart from The Wire, reported the discovery, and it’s difficult to say it’s because the topic was too hard to understand.

This was, and is, just odd. The mainstream as well as non-mainstream media in the country are usually quick to pick up on the slightest shred of legitimate scientific work and report it widely. Heck, many news organisations are also eager to report on illegitimate research – such as those on finding gold in cow urine. After the embargo on the journal paper lifted at 0030 hrs, I (the author of the article on The Wire) remained awake to check if the story had turned out okay – specifically, to check if anyone had any immediate complaints about its contents (there were two tweets about the headline and they were quickly dealt with). But then I ended up staying awake until 4 am because, as much as I looked on Google News and on other news websites, I couldn’t find anyone else who had written about it.

Journal embargoes aren’t new, nor is it the case that journalists in India haven’t signed up to receive embargoed material. For example, the multiple water-on-Mars announcements and the two monumental gravitational-waves discoveries were all announced via papers in the journal Science, and were covered by The Hindu, The Telegraph, Times of India, Indian Express, etc. And Science also published the TIFR paper. Moreover, the TIFR paper wasn’t suppressed or buried in the embargoed press releases that the press team at Science sends out to journalists a few days before the embargo lifts. Third, the significance of the finding was evident from the start; these were the first two lines of the embargoed press release:

Scientists from India report that pure Bismuth – a semimetal with a very low number of electrons per given volume, or carrier concentration – is superconducting at ultralow temperatures. The observation makes Bismuth one of the two lowest carrier density superconductors to date.

All a journalist had to do was get in touch with Srinivasan Ramakrishnan, the lead author of the paper as well as the corresponding author, to get a better idea of the discovery’s significance. From my article on The Wire:

“People have been searching for superconductivity in bismuth for 50 years,” Srinivasan Ramakrishnan, the leader of the TIFR group, told The Wire. “The last work done in bismuth found that it is not superconducting down to 0.01 kelvin. This was done 20 years ago and people gave up.”

So, I’m very curious to know what happened. And since no outlets apart from The Wire have picked the story up, we circle back to the question of media coverage for science news in India. As my editor pointed out, the major publications are mostly interested in stuff like an ISRO launch, a nuclear reactor going critical or an encephalitis outbreak going berserker when it comes to covering science, and even then the science of the story itself is muted while the overlying policy issues are played up. This is not to say the policies are receiving undeserving coverage – they’re important, too – but only that the underlying science, which informs policy in crucial ways, isn’t coming through.

And over time this disregard blinds us to an entire layer of enterprise that involves hundreds of thousands of our most educated people and close to Rs 2 lakh crore of our national expenditure (total R&D, 2013).

TIFR’s superconductor discovery: Where are the reports?

Featured image: The Meissner effect: a magnet levitating above a superconductor. Credit: Mai-Linh Doan/Wikimedia Commons, CC BY-SA 3.0.

On December 2, physicists from the Tata Institute of Fundamental Research (TIFR) announced an exciting discovery: that the metal bismuth becomes a superconductor at a higher temperature than predicted by a popular theory. Granted the theory has had its fair share of exceptions, the research community is excited about this finding because of the unique opportunities it presents in terms of learning more, doing more. But yeah, even without the nuance, the following is true: that TIFR physicists have discovered a new form of superconductivity, in the metal bismuth. I say this as such because not one news outlet in India, apart from The Wire, reported the discovery, and it’s difficult to say it’s because the topic was too hard to understand.

This was, and is, just odd. The mainstream as well as non-mainstream media in the country are usually quick to pick up on the slightest shred of legitimate scientific work and report it widely. Heck, many news organisations are also eager to report on illegitimate research – such as those on finding gold in cow urine. After the embargo on the journal paper lifted at 0030 hrs, I (the author of the article on The Wire) remained awake to check if the story had turned out okay – specifically, to check if anyone had any immediate complaints about its contents (there were two tweets about the headline and they were quickly dealt with). But then I ended up staying awake until 4 am because, as much as I looked on Google News and on other news websites, I couldn’t find anyone else who had written about it.

Journal embargoes aren’t new, nor is it the case that journalists in India haven’t signed up to receive embargoed material. For example, the multiple water-on-Mars announcements and the two monumental gravitational-waves discoveries were all announced via papers in the journal Science, and were covered by The Hindu, The Telegraph, Times of India, Indian Express, etc. And Science also published the TIFR paper. Moreover, the TIFR paper wasn’t suppressed or buried in the embargoed press releases that the press team at Science sends out to journalists a few days before the embargo lifts. Third, the significance of the finding was evident from the start; these were the first two lines of the embargoed press release:

Scientists from India report that pure Bismuth – a semimetal with a very low number of electrons per given volume, or carrier concentration – is superconducting at ultralow temperatures. The observation makes Bismuth one of the two lowest carrier density superconductors to date.

All a journalist had to do was get in touch with Srinivasan Ramakrishnan, the lead author of the paper as well as the corresponding author, to get a better idea of the discovery’s significance. From my article on The Wire:

“People have been searching for superconductivity in bismuth for 50 years,” Srinivasan Ramakrishnan, the leader of the TIFR group, told The Wire. “The last work done in bismuth found that it is not superconducting down to 0.01 kelvin. This was done 20 years ago and people gave up.”

So, I’m very curious to know what happened. And since no outlets apart from The Wire have picked the story up, we circle back to the question of media coverage for science news in India. As my editor pointed out, the major publications are mostly interested in stuff like an ISRO launch, a nuclear reactor going critical or an encephalitis outbreak going berserker when it comes to covering science, and even then the science of the story itself is muted while the overlying policy issues are played up. This is not to say the policies are receiving undeserving coverage – they’re important, too – but only that the underlying science, which informs policy in crucial ways, isn’t coming through.

And over time this disregard blinds us to an entire layer of enterprise that involves hundreds of thousands of our most educated people and close to Rs 2 lakh crore of our national expenditure (total R&D, 2013).

Science Quiz – August 4, 2014

Every week, I create a science quiz for The Hindu newspaper’s In School product. It consists of 10 questions and only developments from the week preceding its day of publication (Monday). The answers are at the end.

But this week’s quiz is a little different. 2014 marks the hundredth year after the start of World War I, a global war that raged from 1914 to 1918. The scale of the conflicts provided an ample stage for the demonstration of the best technology of the time, albeit mostly for destructive purposes. This week’s quiz has 10 questions about that technology.

The British artillery in action during World War I.
Image: Wikimedia Commons

  1. World War I marked the first use of chemical weapons: At the Battle of Bolimov in Poland in January 1915, Germany released the gas xylyl bromide on the battlefield but it became harmless because of the cold. The first lethal use of chemical weapons was at the Second Battle of Ypres in Belgium in April 1915, when Germany used which yellow-green-colored gas to kill 6,000 French soldiers within 10 minutes?
  2. In response to the above attack, the American inventor James Bert Garner invented which simple device to protect combatants on the battlefield from inhaling poisonous gases? This device contained activated charcoal, which is a form of carbon that has a high surface area and absorbs many pollutants from the air. Later on, this device was developed for dogs as well as horses, and during World War II, was reinvented to be lighter and more effective.
  3. The Australian-British physicist William Bragg jointly won the Nobel Prize for physics in 1915 for using X-rays to study crystal structures. In the same year, the British assigned Sir Bragg to develop one of the world’s first scientific systems of sound ranging on the battlefield. What is sound ranging?
  4. The early 20th century saw the rise of industrialism and, along with it, the ________, a new form of motorized transport at the time. In January 1915, German and Ottoman forces set off to raid the Suez Canal. With help from Arab and Egyptian forces, the British advanced over the Sinai peninsula using the ________ to defend the canal. They also conquered the nearby area known as Palestine, an act that led to the later formation of the states of Israel, Lebanon, Syria and Jordan. Fill in the blank(s).
  5. The German inventor Ferdinand von ________ patented the design of a kind of airship, which have come to be named after him, in 1895. During World War I, they were used by the German army to bomb Britain, killing some 500. They then went out of service in 1919 after the defeat of Germany, but then reentered service in 1926 to fly people between Europe and North and South America. They would eventually be retired in the late 1930s and early 1940s. Name the inventor and the name of the airship it came to belong to.
  6. The first military use of __________ was in World War I. The British were reluctant to give their pilots these things because the British thought they would help cowardly pilots survive, effectively encouraging cowardice and reducing team morale. In July 1916, the American inventor Solomon Lee Van Meter, Jr., introduced the world’s first _________ that could be worn as a backpack, and had the revolutionary ripcord: a falling pilot need only pull the ripcord and the _________ would come into play and hopefully save the aviator’s life. Fill in the blank.
  7. The 1916 Battle of Jutland is well-known for being the only battle during World War I that was fought exclusively using _____, between the British and the Germans. At the time, it was only the third battle of its kind, the first two being fought during the Russo-Japanese War. By 1917, the Germans were numerically overwhelmed by the British and started attacking neutral resources in the vicinity, leading to the USA declaring war on Germany in the same year. Fill in the blank with another form of transport.
  8. The continuous metal track that had been developed in 1770 was bettered in the early 1900s. It consisted of a strip of metal plates bolted end-to-end that would run like a belt around two wheels. Such a mechanism was coupled with the four-stroke internal combustion engine, invented in the 1850s by Eugenio Barsanti and Felice Matteucci, to give rise to what extremely heavy, slow but very destructive weapon first used in World War I?
  9. During World War I, troops used to move in long, narrow ditches on the ground called trenches, which protected them from above-ground attacks by enemy troops. To counter this protection, the Germans developed a weapon they created two versions of, called the Kleinflammenwerfer and the Grossflammenwerfer. They were first used in July 1915, and very effectively. When fired into trenches, their effect would flush out British and French troops. Their principal mechanism was to channel oil through a rubber tube and toward a wick. What does Flammenwerfer translate to in English?
  10. The first light, or portable, _______ ___ was developed by the Americans. It was the first of its kind that could be operated by just one man. It was adapted by the British army, and its use was decisive during the Battle of Hamel in France in July 1918, where it reduced the battle time from a potential weeks or months to less than two hours. Fill in the blank.

Answers

  1. Chlorine
  2. Gas mask
  3. Using the sound of firing guns to locate where the guns are using sensors like microphones
  4. Railways
  5. Zeppelin
  6. Parachutes
  7. Ships
  8. Tanks
  9. Flamethrower
  10. Machine gun

Science Quiz – July 28, 2014

Every week, I create a science quiz for The Hindu newspaper’s In School product. It consists of 10 questions and only developments from the week preceding its day of publication (Monday). The answers are at the end.

  1. What’s a haboob?
  2. American biologists tracked ____ ______ over 15 years. On July 25, they announced that their species could be protected from collisions from ships moving in waters along the western coast of North America, contributing to their long-term survival. Fill in the blanks.
  3. In the last last two decades, over 1,500 planets outside the Solar System have been found. In the week of July 21, 2014, astronomers said that life on these planets would find it easier to evolve if they had ______, which would keep surface temperatures from varying too much between day and night. Fill in the blank with the name of a visible object found commonly in Earth’s atmosphere, with types like uncinus, spissatus, nebulosus, congestus, etc.
  4. Researchers who were studying the behavior of dogs found that man’s best friends also experience ________ like humans do, implying that this emotion may not require complex minds. Fill in the blank.
  5. Paleontologists have found 70-million year old footprints of ____________ ___ in Canada. The prints show three pairs of limbs moving parallel to each other, suggesting that these reptiles might have hunted in packs. Fill in the blanks with the name of a dinosaur whose name in Latin means “king lizard”.
  6. If a group of scientists from America and France are to be believed, the evolution of the sizes and shapes of human-made airplanes are mimicking the evolution of the sizes and shapes of what?
  7. According to a report published on July 22, 2014, which animal (with the nomenclature Loxodanta africana) has the world’s most sensitive nose, possessing over 2,000 genes to sense smells (as opposed to humans’ about 400)?
  8. The spots on a _____ _______ are masked by their black fur, making it harder to tell them apart or document their numbers. According to National geographic, however, these animals are less rare than supposed, having been found to be particularly common in the Anshi-Dandeli tiger reserve, Karnataka. Fill in the blanks.
  9. Twenty years ago, in July 1994, the comet Shoemaker-Levy 9 broke apart and collided with the _______, providing the astronomers with their first chance to observe to two extraterrestrial bodies colliding within the Solar System. The comet is also unique because it was found to be orbiting the planet instead of the Sun. Fill in the blank with the name of the planet.
  10. July 25 was the 94th birth anniversary of this British biophysicist who made great important contributions to the study of molecular structures. Around 1953, she helped James Watson and Francis Crick discover the double-helix sructure of DNA, a watershed moment in the history of molecular biology. Name her.

Answers

  1. An intense dust storm that occurs in arid regions of the world, also known as a sandstorm. They are carried by winds moving into a thunderstorm.
  2. Blue whales
  3. Clouds
  4. Jealousy
  5. Tyrannosaurus rex
  6. Birds
  7. African bush elephant
  8. Black panther
  9. Jupiter
  10. Rosalind Franklin