Categories
Analysis Science

On resource constraints and merit

In the face of complaints about how so few women have been awarded this year’s Swarnajayanti Fellowships in India, some scientists pushed back asking which of the male laureates who had been selected should have been left out instead.

This is a version of the merit argument commonly applied to demands for reservation and quota in higher education – and it’s also a form of an argument that often raises its head in seemingly resource-constrained environments.

India is often referred to as a country with ‘finite’ resources, often when people are discussing how best to put these resources to use. There are even romantic ideals associated with working in such environments, such as doing more with less – as ISRO has been for many decades – and the popular concept of jugaad.

But while fixing one variable while altering the other would make any problem more solvable, it’s almost always the resource variable that is presumed to be fixed in India. For example, a common refrain is that ISRO’s allocation is nowhere near that of NASA, so ISRO must figure how best to use its limited funds – and can’t afford luxuries like a full-fledged outreach team.

There are two problems in the context of resource availability here: 1. an outreach team proper is implied to be the product of a much higher allocation than has been made, i.e. comparable to that of NASA, and 2. incremental increases in allocation are precluded. Neither of these is right, of course: ISRO doesn’t have to wait for NASA’s volume of resources in order to set up an outreach team.

The deeper issue here is not that ISRO doesn’t have the requisite funds but that it doesn’t feel a better outreach unit is necessary. Here, it pays to acknowledge that ISRO has received not inconsiderable allocations over the years, as well as has enjoyed bipartisan support and (relative) freedom from bureaucratic interference, so it cops much of the blame as well. But in the rest of India, the situation is flipped: many institutions, and their members, have fewer resources than they have ideas and that affects research in a way of its own.

For example, in the context of grants and fellowships, there’s the obvious illusory ‘prestige constraint’ at the international level – whereby award-winners and self-proclaimed hotshots wield power by presuming prestige to be tied to a few accomplishments, such as winning a Nobel Prize, publishing papers in The Lancet and Nature or maintaining an h-index of 150. These journals and award-giving committees in turn boast of their selectiveness and elitism. (Note: don’t underestimate the influence of these journals.)

Then there’s the financial constraint for Big Science projects. Some of them may be necessary to keep, say, enthusiastic particle physicists from being carried away. But more broadly, a gross mismatch between the availability of resources and the scale of expectations may ultimately be detrimental to science itself.

These markers of prestige and power are all essentially instruments of control – and there is no reason this equation should be different in India. Funding for science in India is only resource-constrained to the extent to which the government, which is the principal funder, deems it to be.

The Indian government’s revised expenditure on ‘scientific departments’ in 2019-2020 was Rs 27,694 crore. The corresponding figure for defence was Rs 3,16,296 crore. If Rs 1,000 crore were moved from the latter to the former, the defence spend would have dropped only by 0.3% but the science spend would have increased by 3.6%. Why, if the money spent on the Statue of Unity had instead been diverted to R&D, the hike would have nearly tripled.

Effectively, the argument that ‘India’s resources are limited’ is tenable only when resources are constrained on all fronts, or specific fronts as determined by circumstances – and not when it seems to be gaslighting an entire sector. The determination of these circumstances in turn should be completely transparent; keeping them opaque will simply create more ground for arbitrary decisions.

Of course, in a pragmatic sense, it’s best to use one’s resources wisely – but this position can’t be generalised to the point where optimising for what’s available becomes morally superior to demanding more (even as we must maintain the moral justification of being allowed to ask how much money is being given to whom). That is, constantly making the system work more efficiently is a sensible aspiration, but it shouldn’t come – as it often does at the moment, perhaps most prominently in the case of CSIR – at the cost of more resources. If people are discontented because they don’t have enough, their ire should be directed at the total allocation itself more than how a part of it is being apportioned.

In a different context, a physicist had pointed out a few years ago that when the US government finally scrapped the proposed Superconducting Supercollider in the early 1990s, the freed-up funds weren’t directed back into other areas of science, as scientists thought they would be. (I couldn’t find the link to this comment nor recall the originator – but I think it was either Sabine Hossenfelder or Sean Carroll; I’ll update this post when I do.) I suspect that if the group of people that had argued thus had known this would happen, it might have argued differently.

I don’t know if a similar story has played out in India; I certainly don’t know if any Big Science projects have been commissioned and then scrapped. In fact, the opposite has happened more often: whereby projects have done more with less by repurposing an existing resource (examples herehere and here). (Having to fight so hard to realise such mega-projects in India could be motivating those who undertake one to not give up!)

In the non-Big-Science and more general sense, an efficiency problem raises its head. One variant of this is about research v. teaching: what does India need more of, or what’s a more efficient expense, to achieve scientific progress – institutions where researchers are free to conduct experiments without being saddled with teaching responsibilities or institutions where teaching is just as important as research? This question has often been in the news in India in the last few years, given the erstwhile HRD Ministry’s flip-flops on whether teachers should conduct research. I personally agree that we need to ‘let teachers teach’.

The other variant is concerned with blue-sky research: when are scientists more productive – when the government allows a “free play of free intellects” or if it railroads them on which problems to tackle? Given the fabled shortage of teachers at many teaching institutions, it’s easy to conclude that a combination of economic and policy decisions have funnelled India’s scholars into neglecting their teaching responsibilities. In turn, rejigging the fraction of teaching or teaching-cum-research versus research-only institutions in India in favour of the former, which are less resource-intensive, could free up some funds.

But this is also more about pragmatism than anything else – somewhat like untangling a bundle of wires before straightening them out instead of vice versa, or trying to do both at once. As things stand, India’s teaching institutions also need more money. Some reasons there is a shortage of teachers include the fact that they are often not paid well or on time, especially if they are employed at state-funded colleges; the institutions’ teaching facilities are subpar (or non-existent); if jobs are located in remote places and the institutions haven’t had the leeway to consider upgrading recreational facilities; etc.

Teaching at the higher-education level in India is also harder because of the poor state of government schools, especially outside tier I cities. This brings with it a separate raft of problems, including money.

Finally, a more ‘local’ example of prestige as well as financial constraints that also illustrates the importance of this PoV is the question of why the Swarnajayanti Fellowships have been awarded to so few women, and how this problem can be ‘fixed’.

If the query about which men should be excluded to accommodate women sounds like a reasonable question – you’re probably assuming that the number of fellows has to be limited to a certain number, dictated in turn by the amount of money the government has said can be awarded through these fellowships. But if the government allocated more money, we could appreciate all the current laureates as well as many others, and arguably without diluting the ‘quality’ of the competition (given just how many scholars there are).

Resource constraints obviously can’t explain or resolve everything that stands in the way of more women, trans-people, gender-non-binary and gender-non-conforming scholars receiving scholarships, fellowships, awards and prominent positions within academia. But axiomatically, it’s important to see that ‘fixing’ this problem requires action on two fronts, instead of just one – make academia less sexist and misogynistic and secure more funds. The constraints are certainly part of the problem, particularly when they are wielded as an excuse to concentrate more resources, and more power, in the hands of the already privileged, even as the constraints may not be real themselves.

In the final analysis, science doesn’t have to be a powerplay, and we don’t have to honour anyone at the expense of another. But deferring to such wisdom could let the fundamental causes of this issue off the hook.

Categories
Culture Op-eds Science

A sympathetic science

If you feel the need to respond, please first make sure you have read the post in full.

I posted the following tweet a short while ago:

With reference to this:

Which in turn was with reference to this:

But a few seconds after publishing it, I deleted the tweet because I realised I didn’t agree with its message.

That quote by Isaac Asimov is a favourite if only because it contains in those words a bigger idea that expands voraciously the moment it comes in contact with the human mind. Yes, there is a problem with understanding ignorance and knowledge as two edges of the same blade, but somewhere in this mixup, a half-formed aspiration to rational living lurks in silence.

The author of another popular tweet commenting on the same topic did not say anything more than reproduce Kiran Bedi’s comment, issued after she shared her controversial ‘om’ tweet on January 4 (details here), that the chant is “worth listening to even if it’s fake”; the mocking laughter was implied, reaffirmed by invoking the name of the political party Bedi is affiliated to (the BJP – which certainly deserves the mockery).

However, I feel the criticism from thousands of people around the country does not address the part of Bedi’s WhatsApp message that reaches beyond facts and towards sympathy. Granted, it is stupid to claim that that is what the Sun sounds like, just as Indians’ obsession with NASA is both inexplicable and misguided. That Bedi is a senior government official, a member of the national ruling party and has 12 million followers on Twitter doesn’t help.

But what of Bedi suggesting that the controversy surrounding the provenance of the message doesn’t have to stand in the way of enjoying the message itself? Why doesn’t the criticism address that?

Perhaps it is because people think it is irrelevant, that it is simply the elucidation of a subjective experience that either cannot be disputed or, more worryingly, is not worth engaging over. If it is the latter, then I fear the critics harbour an idea that what science – as the umbrella term for the body of knowledge obtained by the application of a certain method and allied practices – is not concerned with is not worth being concerned about. Even if all of the critics in this particular episode do not harbour this sentiment, I know from personal experience that there are even more out there who do.

After publishing my tweet, I realised that Bedi’s statement that “it is worth listening to even if it’s fake” is not at odds with physicist Dibyendu Nandi’s words: that chanting the word ‘om’ is soothing and that its aesthetic benefits (if not anything greater) don’t need embellishment, certainly not in terms of pseudoscience and fake news. In fact, Bedi has admitted it is fake, and as a reasonable, secular and public-spirited observer, I believe that is all I can ask for – rather, that is all I can ask for from her in the aftermath of her regrettable action.

If I had known what was going to happen earlier, my expectation would still have been limited – in a worst case scenario in which she insists on sharing the chant – to ask her to qualify the NASA claim as being false. Twelve million followers is nothing to be laughed at.

But what I can ask of others (including myself) is this: mocking Bedi is fine, but what’s the harm in chanting the ‘om’ even if the claims surrounding it are false? What’s the harm in asserting that?

If the reply is, “There is no harm” – okay.

If the reply is, “There is no harm plus that is not in dispute” or that “There is harm because the assertion is rooted in a false, and falsifiable, premise” – I would say, “Maybe the assertion should be part of the conversation, such that the canonical response can be changed from <mockery of getting facts wrong>[1] to <mockery of getting facts wrong> + <discussing the claimed benefits of chanting ‘om’ and/or commenting on the ways in which adherence to factual knowledge can contribute to wellbeing>.”

The discourse of rational aspiration currently lacks any concern for the human condition, and while scientificity, or scientificness, has been becoming a higher virtue by the day, it does not appear to admit that far from having the best interests of the people at heart, it presumes that whatever sprouts from its cold seeds should be nutrition enough.[2]

[1] The tone of the response is beyond the scope of this post.

[2] a. If you believe this is neither science’s purpose nor responsibility, then you must agree it must not be wielded sans the clarification either that it represents an apathetic knowledge system or that the adjudication of factitude does not preclude the rest of Bedi’s message. b. Irrespective of questions about science’s purpose, could this be considered to be part of the purpose of science communication? (This is not a rhetorical question.)

Categories
Op-eds Scicomm

Poor Sanskrit

‘BJP MP Says Speaking Sanskrit Beats Diabetes, Boosts Nervous System’, The Wire, December 13, 2019:

In a debate in the Lok Sabha on December 12 about the Sanskrit University Bill, Ganesh Singh, the BJP MP from Satna, Madhya Pradesh, cited studies conducted by some American research institution to claim speaking Sanskrit every day “boosts the nervous system and keeps diabetes and cholesterol at bay”, PTI reported. He also said, “according to a [study] by US space research organisation NASA, if computer programming is done in Sanskrit, it will be flawless.”

It is ironic that a Bill mooted to improve the status of three educational institutions is accompanied by irrelevant, unsupported rhetoric, that too in the Lok Sabha.

Pratap Chandra Sarangi, the minister of state for animal husbandry, dairying and fisheries and micro, small and medium enterprises, also reportedly said during the same debate that “promotion of this ancient language will not impact any other language”, implying that there is no opportunity cost to valorising Sanskrit.

But misguided associations between Sanskrit, the Vedas and the claims therein, as well as other unfounded ideas, will only encourage low-quality scholarship that won’t preserve knowledge of Sanskrit in its proper historical context. So there is a very real, and very important, opportunity cost for Sanskrit itself.

Categories
Op-eds

The PM’s Chandrayaan group-hug

I understand Dutt’s interpretation of the moment in question but with reservations about what it signals for the nation’s many oppressed. For starters, how many people actually gave a damn?

A few hundred people – many of them mainstream journalists – have been saying that over a billion people did, or should. But even if you are a stickler for arithmetic correctness, it is hard to believe that this claim is true when, for example, The Wire just received a report headline ‘In Kashmir, communication gag ‘robs’ people of the right to mourn their dead’.

This is an entire state that has been labouring from inside a communications blackout for the last month, and the undermining of whose people’s democratic rights was met with less anger than news of Prime Minister Modi’s hug has been received with sheepish joy.

To be sure, my contention is not with whether Modi was being nice when he hugged K. Sivan but entirely with assuming the softness of the gesture extends to hundreds of thousands of people around the country who remain unable to speak up for themselves, or be heard when they do, because of Modi’s actions. If not Kashmir, there is also Assam.

I cannot, will not claim to know what these people really want, and certainly not that their spirits ought to be elevated by a hug from the Man.

Categories
Op-eds

Moon, mission and Modi

Should Prime Minister Narendra Modi not have been in the control room during the autonomous descent phase of Chandrayaan 2? Did his presence exert unnecessary pressure on the ISRO scientists?

I don’t know if the pressure was unnecessary. Irrespective of who was present where, a decade-long, Rs-1,000-crore effort is going to be high-pressure when it hinges on one threading-the-needle level manoeuvre. During major space missions like this, I think K. Sivan or similarly senior agency officials need to get used to the presence of senior political leaders in the control room.

Such a thing might not happen in other parts of the world but, to adapt the ideas in Mukund Thattai’s essay about whether there’s an Indian way of doing science, there’s certainly such a thing as an Indian way of doing space and it involves politicians in the control room.

Of course, I’m being careful to steer clear of any wishful thinking. I could have said for example that the prime minister should ideally have closely followed the mission but not from within the control room. However, Modi’s style of functioning has included attempts to steal the limelight on important occasions and one of the very few fortunate effects of this is that his deep interest in the space programme should increase ISRO’s likelihood of receiving more money and support for future missions. Whether such interest will morph into interference is a separate story.

In fact, I was heartened by Modi’s words at the end of the mission (assuming he meant them sincerely). I like to use the analogy of the Mission Mangal film: if it weren’t for Modi’s successful campaign to make nationalism profitable, the film wouldn’t have got made. Similarly, it would be wishful thinking to expect Modi to get involved but on any terms except his own.

Categories
Culture Scicomm

Review: ‘Mission Mangal’ (2019)

This review assumes Tanul Thakur’s review as a preamble.

There’s the argument that ISRO isn’t doing much by way of public outreach and trust in the media is at a low, and for many people – more than the most reliable sections of the media can possibly cover – Bollywood’s Mission Mangal could be the gateway to the Indian space programme. That we shouldn’t dump on the makers of Mission Mangal for setting up an ISRO-based script and Bollywoodifying it because the prerogative is theirs and it is not a mistake to have fictionalised bits of a story that was inspirational in less sensationalist ways.

And then there is the argument that Bollywood doesn’t function in a vacuum – indeed, anything but – and that it should respond responsibly to society’s problems by ensuring its biographical fare, at least, maintains a safe distance from problematic sociopolitical attitudes. That while creative freedom absolves artists of the responsibility to be historians, there’s such a thing as not making things worse, especially through an exercise of the poetic license that is less art and more commerce.

The question is: which position does Mission Mangal justify over the other?

I went into the cinema hall fully expecting the movie to be shite, but truth be told, Mission Mangal hangs in a trishanku swarga between the worlds of ‘not bad’ and ‘good’. The good parts don’t excuse the bad parts and the bad parts don’t drag the good parts down with them. To understand how, let’s start with the line between fact and fiction.

Mission Mangal‘s science communication is pretty good. As a result of the movie’s existence, thousands more people know about the gravitational slingshot (although the puri analogy did get a bit strained), line-of-sight signal transmission, solar-sailing and orbital capture now. Thousands more kind-of know the sort of questions scientists and engineers have to grapple with when designing and executing missions, although it would pay to remain wary of oversimplification. Indeed, thousands more also know – hopefully, at least – why some journalists’ rush to find and pin blame at the first hint of failure seems more rabid than stringent. This much is good.

However, almost everyone I managed to eavesdrop on believed the whole movie to be true whereas the movie’s own disclaimer at the start clarified that the movie was a fictionalised account for entertainment only. This is a problem because Mission Mangal also gets its science wrong in many places, almost always for dramatic effect. For just four examples: the PSLV is shown as a two-stage rocket instead of as a four-stage rocket; the Van Allen belt is depicted as a debris field instead of as a radiation belt; solar radiation pressure didn’t propel the Mars Orbiter Mission probe on its interplanetary journey; and its high-gain antenna isn’t made of a self-healing material.

More importantly, Mission Mangal gets the arguably more important circumstances surrounding the science all wrong. This is potentially more damaging.

There’s a lot of popular interest in space stuff in India these days. One big reason is that ISRO has undertaken a clump of high-profile missions that have made for easy mass communication. For example, it’s easier to sell why Chandrayaan 2 is awesome than to sell the AstroSat or the PSLV’s fourth-stage orbital platform. However, Mission Mangal sells the Mars Orbiter Mission by fictionalising different things about it to the point of being comically nationalistic.

The NASA hangover is unmistakable and unmistakably terrible. Mission Mangal‘s villain, so to speak, is a senior scientist of Indian origin from NASA who doesn’t want the Mars Orbiter Mission to succeed – so much so that the narrative often comes dangerously close to justifying the mission in terms of showing this man up. In fact, there are two instances when the movie brazenly crosses the line: to show up NASA Man, and once where the mission is rejustified in terms of beating China to be the first Asian country to have a probe in orbit around Mars. This takes away from the mission’s actual purpose: to be a technology-demonstrator, period.

This brings us to the next issue. Mission Mangal swings like a pendulum between characterising the mission as one of science and as one of technology. The film’s scriptwriters possibly conflated the satellite design and rocket launch teams for simplicity’s sake, but that has also meant Mission Mangal often pays an inordinate amount of attention towards the mission’s science goals, which weren’t very serious to begin with.

This is a problem because it’s important to remember that the Mars Orbiter Mission wasn’t a scientific mission. This also shows itself when the narrative quietly, and successfully, glosses over the fact that the mission probe was designed to fit a smaller rocket, and whose launch was undertaken at the behest of political as much as technological interests, instead of engineers building the rocket around the payload, as might have been the case if this had been a scientific mission.

Future scientific missions need to set a higher bar about what they’re prepared to accomplish – something many of us easily forget in the urge to thump our chests over the low cost. Indeed, Mission Mangal celebrates this as well without once mentioning the idea of frugal engineering, and all this accomplishes is to cast us as a people who make do, and our space programme as not hungering for big budgets.

This, in turn, brings us to the third issue. What kind of people are we? What is this compulsion to go it alone, and what is this specious sense of shame about borrowing technologies and mission designs from other countries that have undertaken these missions before us? ‘Make in India’ may make sense with sectors like manufacturing or fabrication but whence the need to vilify asking for a bit of help? Mission Mangal takes this a step further when the idea to use a plastic-aluminium composite for the satellite bus is traced to a moment of inspiration: that ISRO could help save the planet by using up its plastic. It shouldn’t have to be so hard to be a taker, considering ISRO did have NASA’s help in real-life, but the movie precludes such opportunities by erecting NASA as ISRO’s enemy.

But here’s the thing: When the Mars Orbiter Mission probe achieved orbital capture at Mars at the film’s climax, it felt great and not in a jingoistic way, at least not obviously so. I wasn’t following the lyrics of the background track and I have been feeling this way about missions long before the film came along, but it wouldn’t be amiss to say the film succeeded on this count.

It’s hard to judge Mission Mangal by adding points for the things it got right and subtracting points for the things it didn’t because, holistically, I am unable to shake off the feeling that I am glad this movie got made, at least from the PoV of a mediaperson that frequently reports on the Indian space progragge. Mission Mangal is a good romp, thanks in no small part to Vidya Balan (and as Pradeep Mohandas pointed out in his review, no thanks to the scriptwriters’ as well as Akshay Kumar’s mangled portrayal of how a scientist at ISRO behaves.)

I’m sure there’s lots to be said for the depiction of its crew of female scientists as well but I will defer to the judgment of smarter people on this one. For example, Rajvi Desai’s review in The Swaddle notes that the women scientists in the film, with the exception of Balan, are only shown doing superfluous things while Kumar gets to have all the smart ideas. Tanisha Bagchi writes in The Quint that the film has its women fighting ludicrous battles in an effort to portray them as being strong.

Ultimately, Mission Mangal wouldn’t have been made if not for the nationalism surrounding it – the nationalism bestowed of late upon the Indian space programme by Prime Minister Narendra Modi and the profitability bestowed upon nationalism by the business-politics nexus. It is a mess but – without playing down its problematic portrayal of women and scientists – the film is hardly the worst thing to come of it.

In fact, if you are yet to watch the film but are going to, try imagining you are in the late 1990s and that Mission Mangal is a half-gritty, endearing-in-parts sci-fi flick about a bunch of Hindi-speaking people in Bangalore trying to launch a probe to Mars. However, if you – like me – are unable to leave reality behind, watch it, enjoy it, and then fact-check it.

Miscellaneous remarks

  1. Mission Mangal frequently attempts to assuage the audience that it doesn’t glorify Hinduism but these overtures are feeble compared to the presence of a pundit performing religious rituals within the Mission Control Centre itself. Make no mistake, this is a Hindu film.
  2. Akshay Kumar makes a not-so-eccentric entrance but there is a noticeable quirk about him that draws the following remark from a colleague: “These genius scientists are always a little crazy.” It made me sit up because these exact words have been used to exonerate the actions of scientists who sexually harassed women – all the way from Richard Feynman (by no means the first) to Lawrence Krauss (by no means the last).

Categories
Op-eds Science

Finding trash in the dumpster

Just as there’s no merit in writing a piece that is confused and incomplete, there’s no merit in digging through a dumpster and complaining that there’s trash. However, that doesn’t mean that it doesn’t hurt when The Quint publishes something as ass-backwards as this article, titled ‘SpaceX or ISRO, Who’s Winning the Race to Space?’, in a time when finally, at long fucking last, people are beginning to wake up to the idea that ISRO’s and SpaceX’s responsibilities are just different.

In fact, the author of this article seems (temporarily) aware of this distinction, writing, “You have to understand, both ISRO and SpaceX are different entities with different resources at their disposal and ultimately different goals”, even as he makes the comparison anyway. This is immature, irresponsible journalism (if that), worse than the Sisyphean he-said-she-said variety if only because the ‘he’ in this case is the author himself.

But more importantly, against the backdrop of the I&B ministry’s guidelines on combating fake news that were released, and then retracted, earlier today, I briefly wondered whether this Quint piece could be considered fake news. A friend quickly disabused me of the idea by pointing out that this isn’t exactly news, doesn’t contain factual mistakes and doesn’t seem to have malicious intent. All valid points. However, I’m still not sure I agree… My reasons:

1. News is information that is new, contemporary and in the public interest. While the last two parameters can be defined somewhat objectively, novelty can and is frequently subjective. Often, it also extends to certain demographic groups within a population, such as readers of the 18-24 age group, for whom a bit of information that’s old for others is new.

2. The article doesn’t contain factual mistakes but the relationships the author defines between various facts are wrong and untrue. There are also assumptions made in the article (dissected below) that make the author sound stupid more than anything else. One does have the freedom of expression but journalists and publishers also have a responsibility to be… well, responsible.

3. You can make rational decisions only when you know everything there is to know apropos said decisions. So when you deliberately ignore certain details that would render an argument meaningless just so you can make the argument yourself, that’s malice. Especially when you then click the ‘publish’ button and watch as a clump of irrational clutch of sememes reaches 19,000 people in 18 hours.

So to me, this article is fake news.

Here’s another locus: according to Dictionary.com, fake news is

false news stories, often of a sensational nature, created to be widely shared online for the purpose of generating ad revenue via web traffic or discrediting a public figure, political movement, company, etc.

The Quint article is sensational. It claims ISRO and SpaceX can’t be compared but goes on to make the comparison anyway. Why? Traffic, visibility and revenue (through ads on The Quint‘s pages). It’s textual faff that wastes the reader’s time, forces others to spend time correcting the irrational beliefs that will take root in people’s minds as a result of reading the article, and it’s just asinine of The Quint to lend itself as a platform for such endeavours. It’s the sort of thing we frequently blame the male protagonists in Indian films for: spending 150 minutes realising his mistakes.

But again, I do apologise for whining that there’s trash in the dumpster. (Aside: A recent headline in Esquire had just the term for journalism-done-bad – ‘trash avalanche’.)

§

I must dissect the article. It’s an addiction!

India’s premier space agency Indian Space Research Organisation (ISRO) has built a reputation for launching rockets into space at very convenient prices. The consequent effect?

A lot of customers from around the world have come flocking to avail India’s economical rocket-launching services and this has helped the country make some extra bucks from its space exploration program.

Extra bucks, eh?

However, it’s a pretty competitive space.

Elon Musk’s SpaceX has had a decent run in the past couple of days and the recent successful launch of the Falcon Heavy rocket has paved the way for launching heavy satellites into space.

You don’t say…

SpaceX and ISRO are competitors of sorts in the business of commercial satellite launches. The question is, how big of a threat is SpaceX to India’s space agency?

Wrong + 🚩

Okay, first some facts.

That’s kind of you.

ISRO is an experienced campaigner in the field of space exploration as it’s been launching rockets into space since as early as 1975. From sending India’s first satellite into space (Aryabhata), to successfully launching some of the most historic missions like Chandrayaan-1 (2008) and Mangalyaan (2013), ISRO has done it all.

You should check out some of the stuff NASA, JAXA and ESA have done. ISRO really hasn’t done it all – and neither have NASA, JAXA and ESA.

ISRO has carried out a total of 96 spacecraft missions, which involve 66 launch missions.

Apart from the above, it has various other goals, ranging from maintaining the communication satellite constellation around the Earth to sending manned missions into space. Not easy by any means.

Not easy to have goals? Have you seen the todo lists of most people?

Meanwhile, SpaceX is the new kid on the block and really isn’t a big space exploration agency (at least not as big as ISRO).

That’s a comparison 🚩

SpaceX was founded in 2002 by maverick entrepreneur Elon Musk with an aim to provide economically efficient ways to launch satellites and also colonise Mars!
Overall, since SpaceX’s first mission in June, 2010, rockets from the Falcon 9 family have been launched 51 times, out of which 49 have been successful. That’s a 96 percent success rate!

So, in terms of experience, SpaceX still has some catching up to do. But in terms of success rate, it’s tough to beat at 96 percent.

Do you know that if I launch one rocket successfully, I’ll have a success rate of 100%?

SpaceX is a privately-owned enterprise and is funded by big companies like Google and Fidelity. According to a Forbes, SpaceX is valued at more than $20 billion (Rs 13.035 crore) as of December 2017.

That’s Rs 1.3 lakh crore, not Rs 13.035 crore.

ISRO on the other hand is a state-owned entity and is run and controlled by the Government of India. Each year, the agency is allocated a certain part of the nation’s budget. For the year 2018-19, the Centre has allocated Rs 8,936 crore to the space organisation.

There is also a big difference in terms of cost per mission. For example, the Falcon 9 launch vehicle’s cost per launch comes up to $62 million, while ISRO’s Polar Satellite Launch Vehicle (PSLV) costs roughly $15 million per launch.

Why are you comparing the mission costs of one rocket that can carry 10,000+ kg to the LEO to a rocket that can carry 3,800 kg to the LEO? Obviously the former is going to be costlier!

The size of the payloads are different as the Falcon 9 carries much heavier bulk than India’s rockets.

Dear author: please mention that this fact renders the comparison in your previous line meaningless. At least refrain from using terms like “big difference”.

Currently, India makes very less on commercial missions as most of them carry small or nano-satellites. Between 2013 and 2015, ISRO charged an average of $3 million per satellite. That’s peanuts compared to a SpaceX launch, which costs $60 million.

First: Antrix, not ISRO, charges $3 million per satellite. Second: By not discussing payload mass and orbital injection specifications, he’s withholding information that will make this “peanuts” juxtaposition illogical. Third: ISRO and SpaceX operate out of different economies – a point incumbent ISRO chairman K. Sivan has emphasised – leading to different costing (e.g. have you considered labour cost?). Finally, source of data?

According to a 2016 report, India’s premier space agency earned a revenue of around Rs 230 crore through commercial launch services, which is about 0.6 percent of the global launch services market.

India is still to make big ‘moolah’ from their launches as small satellites don’t pull in a lot of money as compared to bigger ones.

That last bit – does the Department of Space know you’re feeling this way? Because if they did, they might not go ahead with building the Small Satellite Launch Vehicle (SSLV). So that’s another 🚩

Despite the fact that ISRO is considered competition for Elon Musk’s SpaceX in the business of commercial satellite launches,

Although this claim is bandied about in the press, I doubt it’s true given the differences in payload capacities, costs to space and launch frequencies of the PSLV/GSLV and the Falcon 9.

he doesn’t shy away from acknowledging how he is “impressed” by India’s frugal methods of conducting successful launch missions.

Is this a big deal? Or are you awed that India’s efforts are being lauded by a white man of the west?

Last year in February, India launched 104 satellites into space using a single rocket, which really caught Musk’s attention. This is a world record that India holds till date.

If that’s not impressive enough, India also launched it’s Mars probe (Mangalyaan) in 2014 which cost less than what it cost to make the Hollywood movie “The Martian”. Ironical?

It’s not “impressive enough”. It’s not ironic.

You have to understand, both ISRO and SpaceX are different entities with different resources at their disposal and ultimately different goals. But again, if Musk is impressed, it means ISRO has hit it out of the park.

But if Musk hadn’t been impressed, then ISRO would’ve continued to be a failure in your eyes, of course.

I am not going to pick a winner because of a lot of reasons. One of them is that I like both of them.

ISRO and SpaceX must both be so relieved.

SpaceX is a 15-year-old company, which has made heavy-lift reusable launch vehicle, while ISRO is a 40-year-old organisation making inroads into the medium-lift category; Not to mention it also has a billion other things to take care of (including working on reusable rockets).

Since the objective of both these organisations is to make frugal space missions possible, it’s no doubt that ISRO has the lead in this race.

How exactly? 🤔 Also, if we shouldn’t be comparing ISRO and SpaceX, how’re they in the same race?

Yes, there is a lot that SpaceX can learn from what India has achieved till now, but that can work both ways, considering the technology SpaceX is using is much more advanced. But in the end one cannot deny the fact that SpaceX is all about launching rockets and getting them back to Earth in one piece, not making satellites.

Categories
Op-eds

For space, frugality is a harmful aspiration

Ref:

‘ISRO’s Chandrayaan-2 mission to cost lesser than Hollywood movie Interstellar – here’s how they make it cost-effective’, staff, Moneycontrol, February 20, 2018. 

‘Chandrayaan-2 mission cheaper than Hollywood film Interstellar’, Surendra Singh, Times of India, February 20, 2018. 

The following statements from the Moneycontrol and Times of India articles have no meaning:

  1. The cost of ISRO’s Mars Orbiter Mission was less than the production cost of the film Gravity.
  2. The cost of ISRO’s Chandrayaan 2 mission is expected to be less than the production cost of the film Interstellar.

It’s like saying the angular momentum of a frog is lower than the speed of light. “But of course,” you’re going to say, “we’re comparing angular momentum to speed – they have different dimensions”. Well, the production cost of a film and mission costs also have different dimensions if you cared to look beyond the ‘$’ prefix. That’s because you can’t just pick up two dollar figures, decide which one’s lower and feel good about that without any social and economic context.

For example, what explains the choice of films to compare mission costs to? Is it because Gravity and Interstellar were both set in space? Is it because both films are fairly famous? Is it also because both films were released recently? Or is it because they offered convenient numbers? It’s probably the last one because there’s no reason otherwise to have picked these two films over, say, After Earth, Elysium, The Martian, Independence Day: Resurgence or Alien: Covenant – all of which were set in space AND cost less to make than Interstellar.

So I suspect it would be equally fair to say that the cost of C’yaan 2 is more than the budget of After Earth, Elysium, The Martian, Independence Day: Resurgence or Alien: Covenant. But few are going to spin it like this because of two reasons:

  1. The cost of anything has to be a rational, positive number, so saying cost(Y) is less than cost(X) would imply that cost(X) > cost(Y) ≥ 0; however, saying cost(Y) is greater than cost(X) doesn’t give us any real sense of what cost(Y) could be because it could approach ∞ or…
  2. Make cost (Y) feel like it’s gigantic, often because your reader assumes cost(Y) should be compared to cost(X) simply because you’ve done so

Now, what comparing C’yaan 2’s cost to that of making Interstellar achieves very well is a sense of the magnitude of the number involved. It’s an excellent associative mnemonic that will likely ensure you don’t forget how much C’yaan 2 cost – except you’d also have to know how much Interstellar cost. Without this bit of the statement, you have one equation and two variables, a.k.a. an unsolvable problem.

Additionally, journalists don’t use such comparisons in other beats. For example, when the Union budget was announced on February 1 this year, nobody was comparing anything to the production costs of assets that had a high cultural cachet. Rs 12.5 crore was Rs 12.5 crore; it was not framed as “India spends less on annual scholarships for students with disabilities than it cost to make Kabali“.

This suggests that such comparisons are reserved by some journalists for matters of space, which in turn raises the possibility that those journalists, and their bosses, organisations and readers, are prompted to think of costs in the space sector as something that must always be brought down. This is where this belief becomes pernicious: it assumes a life of its own. It shouldn’t. Lowering costs becomes a priority only after scientists and engineers have checked tens, possibly hundreds, of other boxes. Using only dollar figures to represent this effort mischaracterises it as simply being an exercise in cost reduction.

So, (risking repetition:) comparing a mission cost to a movie budget tells us absolutely nothing of meaning or value. Thanks to how Moneycontrol’s phrased it, all I know now is that C’yaan 2 is going to cost less than $165 million to make. Why not just say that and walk away? (While one could compare $165 million to mission costs at other space agencies, ISRO chief K. Sivan has advised against it; if one wants to compare it to other PSUs in India, I would advise against it.) The need to bring Interstellar into this, of course, is because we’ve got to show up the West.

And once we’re done showing up the West, we still have to keep. Showing up. The West. Because we’re obsessed with what white people do in first-world countries. If we didn’t have them to show up, who knows, we’d have framed ISRO news differently already because we’d have been able to see $165 million for what it is: a dimensionless number beyond the ‘$’ prefix. Without any other details about C’yaan 2 itself, it’s pretty fucking meaningless.

Please don’t celebrate frugality. It’s an unbecoming tag for any space programme. ISRO may have been successful in keeping costs down but, in the long run, the numbers will definitely go up. Frugality is a harmful aspiration vis-à-vis a sector banking on reliability and redundancy. And for fuck’s sake, never compare: the act of it creates just the wrong ideas about what space agencies are doing, what they’re supposed to be doing and how they’re doing it. For example, consider Sivan’s answer when asked by a Times of India reporter as to how ISRO kept its costs down:

Simplifying the system, miniaturising the complex big system, strict quality control and maximising output from a product, make the missions of Indian space agency cost-effective. We keep strict vigil on each and every stage of development of a spacecraft or a rocket and, therefore, we are able to avoid wastage of products, which helps us minimise the mission cost.

If I didn’t know Sivan was saying this, I’d have thought it was techno-managerial babble from Dilbert (maybe with the exception of QC). More importantly, Sivan doesn’t say here what ISRO is doing differently from other space agencies (such as, say, accessing cheaper labour), which is what would matter when you’re rearing to go “neener neener” at NASA/ESA, but sticks to talking about what everyone already does. Do you think NASA and ESA waste products? Do they not remain vigilant during each and every stage of development? Do they not have robust QC standards and enforcement regimes?

Notice here that Sivan isn’t saying “we’re doing it cheaper than others”, only that doing these things keeps the space agency “cost-effective”. Cost-effective is not the same as frugal.

Featured image: The Moon impact probe that went up on the PSLV C11 mission along with Chandrayaan 1. Credit: ISRO.

Categories
Science

Why Titan is awesome #11

Titaaaaan!

Here we go again. 😄 As has been reported, NASA has been interested in sending a robotic submarine to Saturn’s moon Titan to explore the hydrocarbon lakes near its north pole. Various dates have been mentioned and in all it seems likely the mission will be able to take off around 2040. In the 22 years we have left, we’ve got to build the submarine and make sure it can run autonomously on Titan, where the sea-surface temperature is about 95 K, whose waterbodies liquid-hydrocarbon-bodies are made of methane, ethane and nitrogen, and with density variations of up to 30%.

So researchers at Washington State University (WSU) tried to recreate the conditions of benthic Titan – specifically as they would be inside Kraken and Ligeia Mare – by working with the values of four variables: pressure, temperature, density and composition. Their apparatus consisted of a small, cylindrical cartridge heater submerged inside a cell containing methane, ethane and nitrogen, with controls to measure the values of the variables as well as modify conditions if needed. The scientists took a dozen readings as they varied the concentration of methane, ethane and nitrogen, the pressure, sea temperature, the heater surface temperature and the heat flux at bubble incipience.

The experimental setup used by WSU researchers to recreate the conditions inside one of Titan's liquid-hydrocarbon lakes. Source: WSU/NASA
The experimental setup used by WSU researchers to recreate the conditions inside one of Titan’s liquid-hydrocarbon lakes. Source: WSU/NASA

The data logged by WSU researchers pertaining to the conditions inside one of Titan's liquid-hydrocarbon lakes. Source: WSU/NASA
The data logged by WSU researchers pertaining to the conditions inside one of Titan’s liquid-hydrocarbon lakes. Source: Hartwig and Leachman, 2017/WSU

Based on them, they were able to conclude:

  • The moon’s lakes don’t freeze over even though their surface temperature is proximate to the freezing temperature of methane and ethane because of the dissolved nitrogen. The gas lowers the mixture’s freezing point (by about 16 K below the triple point), thus preventing the formation of icebergs that the robotic submarine would then have had to be designed to avoid (there’s a Titanic joke in here somewhere).
  • However, more nitrogen isn’t necessarily a good thing. It dissolves better in its liquid-hydrocarbon surroundings as the pressure increases and the temperature decreases – both of which will happen at lower depths. And the more nitrogen there is, the more the liquids surrounding the submarine are going to effervesce (i.e. release gas).

What issues would this pose to the vehicle? According to a conference paper authored among others by Jason Hartwig, a member of the WSU team, and presented earlier this year,

Effervescence of nitrogen gas may cause issues in two operational scenarios for any submersible on Titan. In the quiescent case, bubbles that form may interfere with sensitive science measurements, such as composition measurements, in acoustic transmission for depth sounding, and sidescan sonar imaging. In the moving case, bubbles that form along the submarine may coalesce at the aft end of the craft and cause cavitation in the propellers, impacting propulsive performance.

  • The quantity of effervescence and the number of sites on the submarine’s surface along which bubbles formed was observed to increase the warmer the machine’s outer surface got.

The planned design of the submarine NASA plans to use to explore Titan's cold hydrocarbon lakes. Source: Hartwig and Leachman, 2017/WSU
The planned design of the submarine NASA plans to use to explore Titan’s cold hydrocarbon lakes. Source: Hartwig and Leachman, 2017/WSU

If NASA engineers get all these details right, then their submarine will work. But making sure the instruments onboard will be able to make the observations they’ll need to make and the log the data they’ll need to log presents its own challenges. When one of the members of the WSU team decided to look into the experimental cell using a borescope (which is what an endoscope is called outside a hospital) and a video recorder, this is what he got:

(Source)

Oh, Titan.

(Obligatory crib: the university press release‘s headline goes ‘WSU researchers build -300ºF alien ocean to test NASA outer space submarine’. But in the diagram of the apparatus above, note that the cartridge heater standing in for the submarine is 5 cm long. So the researchers haven’t built an alien ocean; they’ve simply reconstructed a few thimblefuls.)

  1. Why Titan is awesome #1
  2. Why Titan is awesome #2
  3. Why Titan is awesome #3
  4. Why Titan is awesome #4
  5. Why Titan is awesome #5
  6. Why Titan is awesome #6
  7. Why Titan is awesome #7
  8. Why Titan is awesome #8
  9. Why Titan is awesome #9
  10. Why Titan is awesome #10

Featured image: A radar image obtained by Cassini during a near-polar flyby on February 22, 2007, showing a big island in the middle of Kraken Mare on Saturn’s moon Titan. Caption and credit: NASA.

Note: This post was republished from late February 15 to the morning of February 16 because it was published too late in the night and received little traffic.

Categories
Life notes Op-eds Science

ISRO v. SpaceX doesn't make sense

Though I’ve never met the guy, I don’t hold Pallava Bagla in very high regard because his stories – particularly of the Indian space programme – for NDTV have often reeked of simplistic concerns, pettiness and, increasingly of late, a nationalistic pride. The most recent instance all these characteristics were put on display was February 12, when NDTV published a 20-minute video of Bagla interviewing K. Sivan, ISRO’s new chairman.

The video is headlined ‘New ISRO Chief Rocket Man Sivan K, A Farmer’s Son, Takes On SpaceX’. What a great story, innit? A farmer’s son taking on SpaceX chief Elon Musk! But if you’re able to stop there and ask a few questions, you’re going to realise that the headline is a load of tosh. First off, the statement that Sivan is a “farmer’s son” is a glancing reference, if not more, to that New York Times cartoon – the implicit jingoism of which we really must get past soon. The national government has been building false narratives around supporting farmers but here we are, valorising the son of one.

Also, referring to Sivan as a “farmer’s son” IMO reduces the man to that one factoid (particularly to serve a narrative Sivan himself may not wish to pursue), as if that’s all we’re going to choose to see about his origins, neglecting what else could have enabled him to succeed the way he has.

Second: ISRO “takes on SpaceX” is a dumb statement. ISRO is a public sector organisation; SpaceX is a private corporation. Their goals are so markedly different that I’m not entirely sure why whoever crafted the headline (not necessarily Bagla) feels ISRO might be threatened by SpaceX’s Falcon Heavy launch (on February 4); I’m less sure why Bagla himself went on to spin his story thus. Case in point: SpaceX is going bigger to be able to take humans to Mars within 10 years; ISRO’s going smaller to help Antrix capitalise on the demand for launching micro and nanosats as well as bigger to launch heavier telecom satellites. Additionally, I know for a fact that ISRO has been cognisant of modularised launch vehicles for at least three years, and this isn’t something Sivan or anyone else has suddenly stopped to consider following the Falcon Heavy launch. The idea’s been around for a bit longer.

All of this is put on show in an exchange about five minutes into the video, as Bagla goes hard at the idea of ISRO possibly lagging behind SpaceX whereas Sivan says (twice) that the PSLV and the Falcon 9 can’t be compared. Transcript:

KS: We can’t compare how much the launch vehicles cost. It depends on the environment in which the manufacturing is realised. I can assure you that our costs are very low because of the way we are manufacturing, the materials we’ve chosen to work with – this way, our costs are always low. But I don’t want to compare because this is always subjective.

PB: But at the same time, we are known for our very low cost missions. For a Falcon 9, they charge about $70 million per launch (ballpark figures) while India did a mission to Mars for roughly the same price. This included the rocket and the satellite, going all the way to Mars. Does that make us feel like we’re very, very competitive in pricing, which is why so many foreign customers are also coming to India?

(ISRO’s Mars Orbiter Mission was a technology demonstrator. The endeavour’s primary mission was to provide a proof of concept of an Indian orbiter at Mars. Second, the satellite’s size and capabilities were both limited by the PSLV’s payload capacity; to wit, MOM’s scientific payload weighed a measly 15 kg whereas the NASA MAVEN, which launched in the same window as MOM, had instruments weighing 65 kg. Third, not many scientific papers have been published on the back of MOM-specific findings. When Bagla says “India did a mission to Mars for roughly the same price” as a single Falcon 9 launch, I also invite him to consider that ISRO has access to cheaper labour than is available in the West and that the MOM launch was noncommercial whereas the Falcon 9 is a rocket developed – and priced – for commerce and profit.)

KS: Foreign customers are coming to India for two reasons. One is, as you said, we’re cost effective – mainly by way of manufacturing and selection of materials. We also make simple rockets. The second reason customers prefer us is the robustness. The reliability of our PSLV is large. When a customer comes to us, they want to make sure there’s a 100% chance their satellite reaches its orbital slot.

PB: So are we cheaper than SpaceX or not?

🤦🏾

KS: Again, I don’t want to compare because it is not correct to compare. If the two rockets were made in the same timeframe, in the same place with equivalent amounts of effort, we can compare. But the rockets have been made in different parts of the world, according to different needs. What I can say is that we have a low-cost vehicle.

Almost exactly a year ago, I’d argued the same thing for The Wire, in an article that didn’t go down well with most readers (across the political spectrum). The thrust of it was that the PSLV had been designed from 1977 onwards to launch Indian remote-sensing satellites and that ISRO receives all its funding from the Department of Space. OTOH, SpaceX designed the Falcon 9 to fit prevailing market needs and, though the company receives a lot of money through NASA contracts, its raison d’être as a private entity is to make money by commercialising launch services. Excerpt:

Casting the GSLV, presumably the Mk-III, as a super-soldier in the space-war arena could be misguided. Unlike SpaceX or Arianespace, but much like Roscosmos, ISRO is a state-backed space agency. It has a mandate from the Department of Space to be India’s primary launch-services provider and fulfil the needs of both private entities as well as the government, but government first, at least since that is how policies are currently oriented. This means the GSLV Mk-III has been developed keeping in mind the satellites India currently needs, or at least needs to launch without ISRO having to depend on foreign rockets. …

On the other hand, Arianespace and SpaceX are both almost exclusively market-driven, SpaceX less so because it was set up with the ostensible goal of colonising Mars. Nonetheless, en route to building the Falcon Heavy, the company has built a workhorse of its own in the Falcon 9. And either way, together with Arianespace, it has carved out a sizeable chunk of the satellite-launching market. …

Thus, though Antrix is tasked with maximising profits, ISRO shouldn’t bank on the commercial satellites market because its mix of priorities is more diverse than those of SpaceX or Arianespace. In other words, the point isn’t to belittle ISRO’s launchers but to state that such comparisons might just be pointless because it is a case of apples and oranges.

Sadly for Bagla – and many others like him looking the fools for pushing such a silly idea – our own space programme assumes value only when compared to someone else’s agenda, irrespective of whether the comparison even makes sense. I also wonder if Sivan thinks such are the questions the consumers of NDTV’s journalism want answered – an idea not so farfetched if you consider that not many journalists get access to ISRO’s top brass in the first place – as well as what fraction of the Indian citizenry consumes the success of the Indian space programme simply relative to the successes of others and not as an enterprise established to serve India’s needs first.

Categories
Life notes Op-eds Science

ISRO v. SpaceX doesn’t make sense

Though I’ve never met the guy, I don’t hold Pallava Bagla in very high regard because his stories – particularly of the Indian space programme – for NDTV have often reeked of simplistic concerns, pettiness and, increasingly of late, a nationalistic pride. The most recent instance all these characteristics were put on display was February 12, when NDTV published a 20-minute video of Bagla interviewing K. Sivan, ISRO’s new chairman.

The video is headlined ‘New ISRO Chief Rocket Man Sivan K, A Farmer’s Son, Takes On SpaceX’. What a great story, innit? A farmer’s son taking on SpaceX chief Elon Musk! But if you’re able to stop there and ask a few questions, you’re going to realise that the headline is a load of tosh. First off, the statement that Sivan is a “farmer’s son” is a glancing reference, if not more, to that New York Times cartoon – the implicit jingoism of which we really must get past soon. The national government has been building false narratives around supporting farmers but here we are, valorising the son of one.

Also, referring to Sivan as a “farmer’s son” IMO reduces the man to that one factoid (particularly to serve a narrative Sivan himself may not wish to pursue), as if that’s all we’re going to choose to see about his origins, neglecting what else could have enabled him to succeed the way he has.

Second: ISRO “takes on SpaceX” is a dumb statement. ISRO is a public sector organisation; SpaceX is a private corporation. Their goals are so markedly different that I’m not entirely sure why whoever crafted the headline (not necessarily Bagla) feels ISRO might be threatened by SpaceX’s Falcon Heavy launch (on February 4); I’m less sure why Bagla himself went on to spin his story thus. Case in point: SpaceX is going bigger to be able to take humans to Mars within 10 years; ISRO’s going smaller to help Antrix capitalise on the demand for launching micro and nanosats as well as bigger to launch heavier telecom satellites. Additionally, I know for a fact that ISRO has been cognisant of modularised launch vehicles for at least three years, and this isn’t something Sivan or anyone else has suddenly stopped to consider following the Falcon Heavy launch. The idea’s been around for a bit longer.

All of this is put on show in an exchange about five minutes into the video, as Bagla goes hard at the idea of ISRO possibly lagging behind SpaceX whereas Sivan says (twice) that the PSLV and the Falcon 9 can’t be compared. Transcript:

KS: We can’t compare how much the launch vehicles cost. It depends on the environment in which the manufacturing is realised. I can assure you that our costs are very low because of the way we are manufacturing, the materials we’ve chosen to work with – this way, our costs are always low. But I don’t want to compare because this is always subjective.

PB: But at the same time, we are known for our very low cost missions. For a Falcon 9, they charge about $70 million per launch (ballpark figures) while India did a mission to Mars for roughly the same price. This included the rocket and the satellite, going all the way to Mars. Does that make us feel like we’re very, very competitive in pricing, which is why so many foreign customers are also coming to India?

(ISRO’s Mars Orbiter Mission was a technology demonstrator. The endeavour’s primary mission was to provide a proof of concept of an Indian orbiter at Mars. Second, the satellite’s size and capabilities were both limited by the PSLV’s payload capacity; to wit, MOM’s scientific payload weighed a measly 15 kg whereas the NASA MAVEN, which launched in the same window as MOM, had instruments weighing 65 kg. Third, not many scientific papers have been published on the back of MOM-specific findings. When Bagla says “India did a mission to Mars for roughly the same price” as a single Falcon 9 launch, I also invite him to consider that ISRO has access to cheaper labour than is available in the West and that the MOM launch was noncommercial whereas the Falcon 9 is a rocket developed – and priced – for commerce and profit.)

KS: Foreign customers are coming to India for two reasons. One is, as you said, we’re cost effective – mainly by way of manufacturing and selection of materials. We also make simple rockets. The second reason customers prefer us is the robustness. The reliability of our PSLV is large. When a customer comes to us, they want to make sure there’s a 100% chance their satellite reaches its orbital slot.

PB: So are we cheaper than SpaceX or not?

🤦🏾

KS: Again, I don’t want to compare because it is not correct to compare. If the two rockets were made in the same timeframe, in the same place with equivalent amounts of effort, we can compare. But the rockets have been made in different parts of the world, according to different needs. What I can say is that we have a low-cost vehicle.

Almost exactly a year ago, I’d argued the same thing for The Wire, in an article that didn’t go down well with most readers (across the political spectrum). The thrust of it was that the PSLV had been designed from 1977 onwards to launch Indian remote-sensing satellites and that ISRO receives all its funding from the Department of Space. OTOH, SpaceX designed the Falcon 9 to fit prevailing market needs and, though the company receives a lot of money through NASA contracts, its raison d’être as a private entity is to make money by commercialising launch services. Excerpt:

Casting the GSLV, presumably the Mk-III, as a super-soldier in the space-war arena could be misguided. Unlike SpaceX or Arianespace, but much like Roscosmos, ISRO is a state-backed space agency. It has a mandate from the Department of Space to be India’s primary launch-services provider and fulfil the needs of both private entities as well as the government, but government first, at least since that is how policies are currently oriented. This means the GSLV Mk-III has been developed keeping in mind the satellites India currently needs, or at least needs to launch without ISRO having to depend on foreign rockets. …

On the other hand, Arianespace and SpaceX are both almost exclusively market-driven, SpaceX less so because it was set up with the ostensible goal of colonising Mars. Nonetheless, en route to building the Falcon Heavy, the company has built a workhorse of its own in the Falcon 9. And either way, together with Arianespace, it has carved out a sizeable chunk of the satellite-launching market. …

Thus, though Antrix is tasked with maximising profits, ISRO shouldn’t bank on the commercial satellites market because its mix of priorities is more diverse than those of SpaceX or Arianespace. In other words, the point isn’t to belittle ISRO’s launchers but to state that such comparisons might just be pointless because it is a case of apples and oranges.

Sadly for Bagla – and many others like him looking the fools for pushing such a silly idea – our own space programme assumes value only when compared to someone else’s agenda, irrespective of whether the comparison even makes sense. I also wonder if Sivan thinks such are the questions the consumers of NDTV’s journalism want answered – an idea not so farfetched if you consider that not many journalists get access to ISRO’s top brass in the first place – as well as what fraction of the Indian citizenry consumes the success of the Indian space programme simply relative to the successes of others and not as an enterprise established to serve India’s needs first.

Categories
Life notes Scicomm

We don't have a problem with the West, we're just obsessed with it

When you don’t write about scientific and technological research for its inherent wonderfulness but for its para-scientific value, you get stories born out of jingoism masquerading as a ‘science’ piece. Take this example from today’s The Hindu (originally reported by PTI):

A new thermal spray coating technology used for gas turbine engine in spacecraft developed by a Rajasthan-based researcher has caught the attention of a NASA scientist, an official said.

Expressing his interest in the research, James L. Smialek, a scientist from NASA wrote to Dr. Satish Tailor after it was published in the journal Ceramics International and Thermal Spray Bulletin, said S.C. Modi, the chairman of a Jodhpur-based Metallizing Equipment Company.

This story is in the news not because a scientist in Rajasthan (Tailor) developed a new and better spray-coating technique. It’s in the news because a white man* (Smialek) wrote to its inventor expressing his interest. If Smialek hadn’t contacted Tailor, would it have been reported?

The article’s headline is also a bit off: ‘NASA keen on India-made technology for spacecraft’ – but does Smialek speak for NASA the organisation? He seems to be a senior research scientist there, not a spokesperson or a senior-level decision-maker. Additionally, “India-made”? I don’t think so. “India-made” would imply that a cohesion of Indian institutions and laboratories are working to make and utilise this technology – whereas while we’re fawning over NASA’s presumed interest, the story makes no mention of ISRO. It does say CSIR and DRDO scientists are “equally” interested but to me “India-made” would also then beggar the question: “Why cut funding for CSIR?”

Next, what’s a little funny is that while the Indian government is busy deriding Western ‘cultural imports’ ruining our ‘pristine’ homegrown values, while Indian ministers are constantly given to doubting the West’s scientific methods, some journalists are using the West’s acknowledgment to recognise Indian success stories. Which makes me think if what we’re really doing is being obsessed with the West instead of working towards patching the West’s mistakes, insofar as they are mistakes, with our corrections (very broadly speaking).

The second funny thing about this story is that, AFAIK, scientists writing in one part of the world to those in other is fairly regular. That’s one of the reasons people publish in a journal – especially in one as specific as Ceramics International: so people who are interested in research on the same topic can know what their peers are up to. But by reporting on such incidents on a one-off basis, journalists run the risk of making cross-country communication look rare, even esoteric. And by imbibing the story with the quality of rareness, they can give the impression that Smialek writing to Tailor is something to be proud of.

It’s not something to be proud of for this reason simply because it’s an artificial reason. It’s a reason that doesn’t objectively exist.

Nonetheless, I will say that I’m glad PTI picked up on Tailor’s research at least because of this; akin to how embargoes are beacons pointing journalists towards legitimate science stories (although not all the time), validation can also come from an independent researcher expressing his interest in a bit of research. However, it’s not something to be okay with in the long-term – if only because… doesn’t it make you wonder how much we might not know about what researchers are doing in our country simply because Western scientists haven’t written to some of them?

*No offence to you, James. Many Indians do take take some things more seriously because white people are taking it seriously.

Featured image credit: skeeze/pixabay.