Two outstretched hands, one white and one black, reaching for each other from diagonal ends of the screen.

Sci-fi past the science

There’s an interesting remark in the introductory portion of this article by Zeynep Tufekci (emphasis added):

At its best, though, science fiction is a brilliant vehicle for exploring not the far future or the scientifically implausible but the interactions among science, technology and society. The what-if scenarios it poses can allow us to understand our own societies better, and sometimes that’s best done by dispensing with scientific plausibility.

Given the context, such plausibility is likely predicated on the set of all pieces of knowledge minus the set of the unknown-unknown. This in turn indicates a significant divergence between scientific knowledge and knowledge of human society, philosophies and culture as we progress into the future, at least to the extent that there is a belief in the present that scientific knowledge already trails our knowledge of the sociological and political components required to build a more equitable society.

This is pithy and non-trivial at the same time: pithy because the statement reaffirms the truism that science in and of itself lacks the moral centrifuge to separate good from bad, and non-trivial because it refutes the technoptimism that guides Elon Musk, Jeff Bezos, (the late) Paul Allen, etc.

If you superimposed this condition on sci-fi the genre, it becomes clear that Isaac Asimov’s and Arthur Clarke’s works – which the world’s tech billionaires claim to have been inspired by in their pursuit of interplanetary human spaceflight, as Tufekci writes – were less about strengthening the role of science and technology in our lives and more about rendering it transparent, so we can look past the gadgets and the gadgetry towards the social structures they’re embedded in.

In effect, Tufekci continues:

Science fiction is sometimes denigrated as escapist literature, but the best examples of it are exactly the opposite.

She argues in her short article, more of a long note, that this alternative reading of sci-fi and its purpose could encourage the billionaires to retool their ambitions and think about making life better on Earth. Food for thought, especially at the start of a new decade when there seems to be a blanket lien to hope – although I very much doubt the aspirations of Musk, Bezos and others were nurtured about such a simple fulcrum.

The ‘could’ve, should’ve, would’ve’ of R&D

ISRO’s Moon rover, which will move around the lunar surface come September (if all goes well), will live and and die in a span of 14 days because that’s how long the lithium-ion cells it’s equipped with can survive the -160º C-nights at the Moon’s south pole, among other reasons. This here illustrates an easily understood connection between fundamental research and its apparent uselessness on the one hand and applied science and its apparent superiority on the other.

Neither position is entirely and absolutely correct, of course, but this hierarchy of priorities is very real, at least in India, because it closely parallels the practices of the populist politics that privileges short-term gains over benefits in the longer run.

In this scenario, it may not seem worthwhile to fund a solid-state physicist who has, based on detailed physicochemical analyses, fashioned for example a new carbon-based material that can store lithium ions in its atomic lattice and has better thermal characteristics than graphite. It may seem even less worthwhile to fund researchers probing the seemingly obscure electronic properties of materials like graphene and silicene, writing papers steeped in abstract math and unable to propose a single viable application for the near-future.

But give it twenty years and a measure of success in the otherwise-unpredictable translational research part of the R&D pipeline, and suddenly, you’re holding the batteries that’re supposed to be installed on a Moon rover and need to determine how many instruments you can pack on there to ensure the whole ensemble is powered for the whole time they’ll need to conduct each of their tests. Just as suddenly, you’re also thinking about what else you could’ve installed on the little machine so it could’ve lived longer, and what else it could’ve potentially discovered in this bonus time.

Maybe you’re just happy, knowing how things have been for research in the country in the last two decades and based on the spaceflight organisation’s goals (a part of which the government has a say in), that the batteries can even last for two weeks. Maybe you’re just sad because you think it could’ve been better. But one way or another, it’s an inescapably tangible reminder that investments in research determine what you’re going to get to take out of the technology in the future. Put differently: it’s ridiculous to expect to know which water molecules are going to end up in which plant, but unless you water the soil, the plants are going to start wilting.

Chandrayaan 2 itself may be lined up to be a great success but who knows, there could come along a future mission where a groundbreaking instrument developed by an inspired student at a state university has to be left out of an interplanetary satellite because we didn’t have access to the right low-density, high-strength materials. Or where a bunch of Indians are on a decade-long interstellar voyage and the captain realises crew morale is dangerously low because the government couldn’t give two whits about social psychology.

Mars. Credit: NASA

The Planetary Society says humans orbiting Mars is important before they land on it

On Thursday night (IST), the Planetary Society announced the results of a workshop it hosted earlier this week to re-engage with the future of human spaceflight. The advocacy group concluded that humans orbiting Mars was a crucial step before humans could land on Mars.

The workshop, called “Humans Orbiting Mars”, was held with officials from the aerospace industry, scientific community and NASA in attendance. They addressed the question of whether human spaceflight to Mars by 2033 was feasible if NASA’s budget increased only by 2-3% between now and then (to keep up with inflation), and assuming the agency’s contribution to the International Space Station would end by 2024. The answer was ‘Yes’ conditional to the orbit-first-land-next strategy.

Some results from the workshop were made public by Scott Hubbard, former director of the NASA Ames Research Center, and John Logsdon, founder of the Space Policy Institute at George Washington University, in a presser. The Society’s president and popular science communicator Bill Nye also presented some tidbits, but none of them were forthcoming about the precise details of the Society’s strategy.

Hubbard said that having humans orbit Mars first before landing was important to break “this very challenging effort into smaller, more executable pieces”, differentiating it from some private sector approaches to the red planet that Logsdon said “exist but don’t seem credible”. They admitted they were conscious of the strategy’s parallels to the Apollo 8 mission, which invigorated public interest in space exploration by carrying the first humans into an orbit around the moon in 1968 and giving humanity its first view of Earthrise.

A notional timeline for the 2033 mission was presented also, with crewed test-flights in cislunar orbits being planned for 2025 and 2027. Mars missions are fixed to launch windows every 26 months to coincide with the planet’s opposition, when it comes closest to Earth. However, the launch window in 2033 provides a suitable focus year also because NASA hopes to have tested the necessary spaceflight technologies and experience through its Asteroid Retrieval Mission in the 2020s.

The Society’s space-policy writer Casey Dreier concluded on his blog:

Over the next few months, we will work to publish as much of the content presented at the workshop as we can. And later this year, we will release a report based on the discussions and feedback from this meeting formalizing our thoughts and ideas on this path forward.

However, the presser only left reporters with more questions than answers. It may have been wiser to announce all the results of the workshop alongside the report instead of releasing vague details now, even if it appears the Planetary Society has a detailed architecture of the concept in place.

And – as if to have the Society reconsider its barb about infeasible private missions to Mars – the report’s release later this year could coincide with SpaceX’s much-awaited announcement of the details of its Mars Colonial Transporter, a transport vehicle that CEO-CTO Elon Musk has promised will be very different from the Dragon and Falcon 9 rockets it currently operates. Musk is also expected to announce new spacesuit designs meeting utility requirements by the end of 2015.

Featured image credit: NASA