A research group in Germany has captured images of what a rotating molecule looks like. This is a significant feat because it is very difficult to observe individual atoms and molecules, which are very small as well as very fragile. Scientists often have to employ ingenious techniques that can probe their small scale but without destroying them in the act of doing so.
The researchers studied carbonyl sulphide (OCS) molecules, which has a cylindrical shape. To perform their feat, they went through three steps. First, the researchers precisely calibrated two laser pulses and fired them repeatedly – ~26.3 billion times per second – at the molecules to set them spinning.
Next, they shot a third laser at the molecules. The purpose of this laser was to excite the valence electrons forming the chemical bonds between the O, C and S atoms. These electrons absorb energy from the laser’s photons, become excited and quit the bonds. This leaves the positively charged atoms close to each other. Since like charges repel, the atoms vigorously push themselves apart and break the molecule up. This process is called a Coulomb explosion.
At the moment of disintegration, an instrument called a velocity map imaging (VMI) spectrometer records the orientation and direction of motion of the oxygen atom’s positive charge in space. Scientists can work backwards from this reading to determine how the molecule might have been oriented just before it broke up.
In the third step, the researchers restart the experiment with another set of OCS molecules.
By going through these steps repeatedly, they were able to capture 651 photos of the OCS molecule in different stages of its rotation.
These images cannot be interpreted in a straightforward way – the way we interpret images of, say, a rotating ball.
This is because a ball, even though it is composed of millions of molecules, has enough mass for the force of gravity to dominate proceedings. So scientists can understand why a ball rotates the way it does using just the laws of classical mechanics.
But at the level of individual atoms and molecules, gravity becomes negligibly weak whereas the other three fundamental forces – including the electromagnetic force – become more prominent. To understand the interactions between these forces and the particles, scientists use the rules of quantum mechanics.
This is why the images of the rotating molecules look like this:
These are images of the OCS molecule as deduced by the VMI spectrometer. Based on them, the researchers were also able to determine how long the molecule took to make one full rotation.
As a spinning ball drifts around on the floor, we can tell exactly where it is and how fast it is spinning. However, when studying particles, quantum mechanics prohibits observers from knowing these two things with the same precision at the same time. You probably know this better as Heisenberg’s uncertainty principle.
So if you have a fix on where the molecule is, that measurement prohibits you from knowing exactly how fast it is spinning. Confronted with this dilemma, scientists used the data obtained by the VMI spectrometer together with the rules of quantum mechanics to calculate the probability that the molecule’s O, C and S atoms were arranged a certain way at a given point of time.
The images above visualise these probabilities as a colour-coded map. With the position of the central atom (presumably C) fixed, the probability of finding the other two atoms at a certain position is represented on a blue-red scale. The redder a pixel is, the higher the probability of finding an atom there.
For example, consider the images at 12 o’clock and 6 o’clock: the OCS molecule is clearly oriented horizontally and vertically, resp. Compare this to the measurement corresponding to the image at 9 o’clock: the molecule appears to exist in two configurations at the same time. This is because, approximately speaking, there is a 50% probability that it is oriented from bottom-left to top-right and a 50% probability that it is oriented from bottom-right to top-left. The 10 o’clock figure represents the probabilities split four different ways. The ones at 4 o’clock and 8 o’clock are even more messy.
But despite the messiness, the researchers found that the image corresponding to 12 o’clock repeated itself once every 82 picoseconds. Ergo, the molecule completed one rotation every 82 picoseconds.
This is equal to 731.7 billion rpm. If your car’s engine operated this fast, the resulting centrifugal force, together with the force of gravity, would tear its mechanical joints apart and destroy the machine. The OCS molecule doesn’t come apart this way because gravity is 100 million trillion trillion times weaker than the weakest of the three subatomic forces.
The researchers’ study was published in the journal Nature Communications on July 29, 2019.