As a big week for physics comes up–a July 4 update by CERN on the search for the Higgs boson followed by ICHEP ’12 at Melbourne–I feel really anxious as a small-time proto-journalist and particle-physics-enthusiast. If CERN announces the discovery of evidence that rules out the existence of such a thing as the Higgs particle, not much will be lost apart from years of theoretical groundwork set in place for the post-Higgs universe. Physicists obeying the Standard Model will, to think the snowclone, scramble to their boards and come up with another hypothesis that explains mass-formation in quantum-mechanical terms.
For me… I don’t know what it means. Sure, I will have to unlearn the Higgs mechanism, which does make a lot of sense, and scour through the outpouring of scientific literature that will definitely follow to keep track of new directions and, more fascinatingly, new thought. The competing supertheories–loop quantum gravity (LQG) and string theory–will have to have their innards adjusted to make up for the change in the mechanism of mass-formation. Even then, their principle bone of contention will remain unchanged: whether there exists an absolute frame of reference. All this while, the universe, however, will have continued to witness the rise and fall of stars, galaxies and matter.
It is easier to consider the non-existence of the Higgs boson than its proven existence: the post-Higgs world is dark, riddled with problems more complex and, unsurprisingly, more philosophical. The two theories that dominated the first half of the previous century, quantum mechanics and special relativity, will still have to be reconciled. While special relativity holds causality and locality close to its heart, quantum mechanics’ tendency to violate the latter made it disagreeable at the philosophical level to A. Einstein (in a humorous and ironical turn, his attempts to illustrate this “anomaly” numerically opened up the field that further made acceptable the implications of quantum mechanics).
The theories’ impudent bickering continues with mathematical terms as well. While one prohibits travel at the speed of light, the other allows for the conclusive demonstration of superluminal communication. While one keeps all objects nailed to one place in space and time, the other allows for the occupation of multiple regions of space at a time. While one operates in a universe wherein gods don’t play with dice, the other can exist at all only if there are unseen powers that gamble on a secondly basis. If you ask me, I’d prefer one with no gods; I also have a strange feeling that that’s not a physics problem.
Speaking of causality, physicists of the Standard Model believe that the four fundamental forces–nuclear, weak, gravitational, and electromagnetic–cause everything that happens in this universe. However, they are at a loss to explain why the weak force is 1032-times stronger than the gravitational force (even the finding of the Higgs boson won’t fix this–assuming the boson exists). An attempt to explain this anomaly exists in the name of supersymmetry (SUSY) or, together with the Standard Model, MSSM. If an entity in the (hypothetical) likeness of the Higgs boson cannot exist, then MSSM will also fall with it.
Taunting physicists everywhere all the way through this mesh of intense speculation, Werner Heisenberg’s tragic formulation remains indefatigable. In a universe in which the scale at which physics is born is only hypothetical, in which energy in its fundamental form is thought to be a result of probabilistic fluctuations in a quantum field, determinism plays a dominant role in determining the future as well as, in some ways, contradicting it. The quantum field, counter-intuitively, is antecedent to human intervention: Heisenberg postulated that physical quantities such as position and particle spin come in conjugate quantities, and that making a measurement of one quantity makes the other indeterminable. In other words, one cannot simultaneously know the position and momentum of a particle, or the spins of a particle around two different axes.
To me, this seems like a problem of scale: humans are macroscopic in the sense that they can manipulate objects using the laws of classical mechanics and not the laws of quantum mechanics. However, a sense of scale is rendered incontextualizable when it is known that the dynamics of quantum mechanics affect the entire universe through a principle called the collapse postulate (i.e., collapse of the state vector): if I measure an observable physical property of a system that is in a particular state, I subject the entire system to collapse into a state that is described by the observable’s eigenstate. Even further, there exist many eigenstates for collapsing into; which eigenstate is “chosen” depends on its observation (this is an awfully close analogue to the anthropic principle).
That reminds me. The greatest unsolved question in my opinion is whether the universe houses the brain or if the brain houses the universe. To be honest, I started writing this post without knowing how it would end: there were multiple eigenstates it could “collapse” into. That it would collapse into this particular one was unknown to me, too, and, in hindsight, there was no way I could have known about any aspect of its destiny. Having said that, the nature of the universe–and the brain/universe protogenesis problem–with the knowledge of deterministic causality and mensural antecedence, if the universe conceived the brain, the brain must inherit the characteristics of the universe, and therefore must not allow for freewill.
Now, I’m faintly depressed. And yes, this eigenstate did exist in the possibility-space.