All the science in 'The Cloverfield Paradox'
I watched The Cloverfield Paradox last night, the horror film that Paramount pictures had dumped with Netflix and which was then released by Netflix on February 4. It’s a dumb production: unlike H.R. Giger’s existential, visceral horrors that I so admire, The Cloverfield Paradox is all about things going bump in the dark. But what sets these things off in the film is quite interesting: a particle accelerator. However, given how bad the film was, the screenwriter seems to have used this device simply as a plot device, nothing else.
The particle accelerator is called Shepard. We don’t know what particles it’s accelerating or up to what centre-of-mass collision energy. However, the film’s premise rests on the possibility that a particle accelerator can open up windows into other dimensions. The Cloverfield Paradox needs this because, according to its story, Earth has run out of energy sources in 2028 and countries are threatening ground invasions for the last of the oil, so scientists assemble a giant particle accelerator in space to tap into energy sources in other dimensions.
Considering 2028 is only a decade from now – when the Sun will still be shining bright as ever in the sky – and renewable sources of energy aren’t even being discussed, the movie segues from sci-fi into fantasy right there.
Anyway, the idea that a particle accelerator can open up ‘portals’ into other dimensions isn’t new nor entirely silly. Broadly, an accelerator’s purpose is founded on three concepts: the special theory of relativity (SR), particle decay and the wavefunction of quantum mechanics.
According to SR, mass and energy can transform into each other as well as that objects moving closer to the speed of light will become more massive, thus more energetic. Particle decay is what happens when a heavier subatomic particle decomposes into groups of lighter particles because it’s unstable. Put these two ideas together and you have a part of the answer: accelerators accelerate particles to extremely high velocities, the particles become more massive, ergo more energetic, and the excess energy condenses out at some point as other particles.
Next, in quantum mechanics, the wavefunction is a mathematical function: when you solve it based on what information you have available, the answer spit out by one kind of the function gives the probability that a particular particle exists at some point in the spacetime continuum. It’s called a wavefunction because the function describes a wave, and like all waves, this one also has a wavelength and an amplitude. However, the wavelength here describes the distance across which the particle will manifest. Because energy is directly proportional to frequency (E = h × ν; h is Planck’s constant) and frequency is inversely proportional to the wavelength, energy is inversely proportional to wavelength. So the more the energy a particle accelerator achieves, the smaller the part of spacetime the particles will have a chance of probing.
Spoilers ahead
SR, particle decay and the properties of the wavefunction together imply that if the Shepard is able to achieve a suitably high energy of acceleration, it will be able to touch upon an exceedingly small part of spacetime. But why, as it happens in The Cloverfield Paradox, would this open a window into another universe?
Spoilers end
Instead of directly offering a peek into alternate universes, a very-high-energy particle accelerator could offer a peek into higher dimensions. According to some theories of physics, there are many higher dimensions even though humankind may have access only to four (three of space and one of time). The reason they should even exist is to be able to solve some conundrums that have evaded explanation. For example, according to Kaluza-Klein theory (one of the precursors of string theory), the force of gravity is so much weaker than the other three fundamental forces (strong nuclear, weak nuclear and electromagnetic) because it exists in five dimensions. So when you experience it in just four dimensions, its effects are subdued.
Where are these dimensions? Per string theory, for example, they are extremely compactified, i.e. accessible only over incredibly short distances, because they are thought to be curled up on themselves. According to Oskar Klein (one half of ‘Kaluza-Klein’, the other half being Theodore Kaluza), this region of space could be a circle of radius 10-32 m. That’s 0.00000000000000000000000000000001 m – over five quadrillion times smaller than a proton. According to CERN, which hosts the Large Hadron Collider (LHC), a particle accelerated to 10 TeV can probe a distance of 10-19 m. That’s still one trillion times larger than where the Kaluza-Klein fifth dimension is supposed to be curled up. The LHC has been able to accelerate particles to 8 TeV.
The likelihood of a particle accelerator tossing us into an alternate universe entirely is a different kind of problem. For one, we have no clue where the connections between alternate universes are nor how they can be accessed. In Nolan’s Interstellar (2014), a wormhole is discovered by the protagonist to exist inside a blackhole – a hypothesis we currently don’t have any way of verifying. Moreover, though the LHC is supposed to be able to create microscopic blackholes, they have a 0% chance of growing to possess the size or potential of Interstellar‘s Gargantua.
In all, The Cloverfield Paradox is a waste of time. In the 2016 film Spectral – also released by Netflix – the science is overwrought, stretched beyond its possibilities, but still stays close to the basic principles. For example, the antagonists in Spectral are creatures made entirely as Bose-Einstein condensates. How this was even achieved boggles the mind, but the creatures have the same physical properties that the condensates do. In The Cloverfield Paradox, however, the accelerator is a convenient insertion into a bland story, an abuse of the opportunities that physics of this complexity offers. The writers might as well have said all the characters blinked and found themselves in a different universe.