SpaceX nears big test to return human spaceflight to America
Since the end of the space shuttle era, no American spacecraft has ferried American astronauts to the International Space Station. While NASA has no problem with letting Russia stepping in and transporting the astronauts, escalating tensions with the Asian giant over its de facto annexation of Ukraine’s Crimea have left politicians bristling with the idea of having to depend on the Russians. The issue has become symbolic of the USA’s pending, but not quite here, comeback.
A big step toward rectifying it comes on May 6, Wednesday, when SpaceX will conduct the important pad-abort test (PAT) for its Dragon crew-capsule, unveiled in May 2014. The test is one of the final steps before the capsule is certified by NASA, which awarded a multibillion-dollar contract to SpaceX in 2014 to ferry astronauts to and from the ISS. It adds to the $1.6-billion commercial resupply services deal to transport cargo to, again, the ISS.
The PAT on May 6 will check if Dragon will be able to secure its crew if some misfortune were to befall the launchpad or the launch. The capsule has been fit with seven seats (one for each astronaut it can house). One of them will be occupied by a sensor-rigged dummy nicknamed “Buster”. During the test, eight SuperDraco engines* integrated with Dragon will fire for six seconds and take the capsule to a height of about 5,000 feet. Then, Dragon will descend using two reefed drogue parachutes and three canopies into a patch of water about 1.5 km from the launchpad. Finally, after recovery, it will be transported to SpaceX’s facility in McGregor, Texas, for analysis.
The entire exercise is expected to take less than two minutes, with most of the action occurring in the first 30 seconds, although it will happen when SpaceX feels “ready” within a launch window from 7 am to 2.30 pm (EST) on May 6. The occasion will mark the first time eight SuperDracos will be fired in unison. Each of these thrusters is fueled by monomethyl hydrazine and nitrogen tetroxide. Together, they will generate a propulsive yield of 54,430 kg – a figure SpaceX spokesperson Hans Koenigsmann had smugly called “a lot of kick” during a briefing on May 1. The total weight of the stack (including the propellant) will be 11,115 kg.
On April 21, NASA announced on its site,
SpaceX will perform the test under its Commercial Crew Integrated Capability (CCiCap) agreement with NASA, but can use the data gathered during the development flight as it continues on the path to certification. Under a separate Commercial Crew Transportation Capability (CCtCap) contract, NASA’s Commercial Crew Program will certify SpaceX’s Crew Dragon, Falcon 9 rocket, ground and mission operations systems to fly crews to and from the International Space Station.
The PAT had first been scheduled to happen in early-April, but was postponed after some faults were found in the helium-pressurization bottles of the Falcon 9 rocket during testing. Once it was rectified, the higher-priority launch of the TurkmenistanAlem 52E/MonacoSat satellite (Turkmenistan’s inaugural telecom satellite) had to be carried out first, which finally happened on April 27. However, the Falcon 9 will not be involved in the PAT.
Dragon is scheduled to undergo its first non-crewed orbital-flight test in 2016, followed by a crewed test in 2017. That’s the same timeframe in which Boeing – which also received a contract in 2014 – is expected to finish certifying its commercial crew program.
To stay on track, SpaceX has demanded $1.2 billion a year from NASA. Unsurprisingly, the number was met with skepticism by Congress, which particularly questioned the need for two crew vehicles apart from Soyuz instead of just one more. A part of that sentiment might’ve been allayed when, in October 2014, an Antares rocket exploded moments after takeoff while, earlier this week, a Progress 59 spacecraft launched by Russia tumbled out of control in space and fell back to Earth. Both failures deprived the ISS crew of essential supplies.
NASA, on the other hand, doesn’t mind the money. By late-2017 or 2018, “There’s going to be a bit of a race … about who’s going to be flying the first NASA crew member from the Florida Space Coast,” Kathy Lueders, the head of NASA’s Commercial Crew Program, told Florida Today. “This is going to be exciting.”
*… all 3D-printed!
Featured image: The interior of SpaceX’s Dragon crew-capsule. The seating configuration of the seven astronauts it can carry at a time is shown. Credit: SpaceX