New category: Exoplanets

Using a network of telescopes scattered across the globe, including the Danish 1.5-m telescope at ESO La Silla (Chile), astronomers  discovered a new extrasolar planet significantly more Earth-like than any other planet found so far. The planet, which is only about 5 times as massive as the Earth, circles its parent star in about 10 years. It is the least massive exoplanet around an ordinary star detected so far and also the coolest. The planet most certainly has a rocky/icy surface. Its discovery marks a groundbreaking result in the search for planets that support life.
An artist’s impression of an icy exoplanet. Image: Wikimedia Commons

Of late, telescopes like Kepler, Spitzer and ALMA are revealing new things about exoplanets as much as they’re exposing how clueless we are about their origins. Unlike in the search for life, where our only precedents are terrestrial, the search for and study of exoplanet systems is aided by Kepler’s revelation of hundreds of them, in a variety of flavors. And the more of them we discover, the more it becomes evident that in many ways the Solar System is actually an outlier, and that subjecting our stellar neighborhood to more probing is only going to reveal so much about the incomparable world outside. Each discovery is an opportunity for astronomers to revisit some detail or other. Like in the Banach-Tarski paradox, a dismantled theory is pieced back together to predict different things with a twist or two. Needless to say, it’s an exciting time to be a planetary scientist – or an interested blogger. To keep track of developments, The Last Why has a new category called ‘Exoplanets’. The eight posts already filed in it are linked to below, with more to come. Enjoy the ride!

  1. Why do tilted/eccentric orbits form?
  2. Kepler data reveals a frost giant
  3. Looking for life? Look for pollution.
  4. Studying our primal horizons at the Kuiper belt
  5. What life on Earth tells us about life ‘elsewhere’
  6. Rocky exoplanets only get so big before they get gassy
  7. The secrets of how planets form
  8. Interactions between a planetary system and an FFP: A fuzzy approach