A NASA photograph of the Voyager space probe, 1977.
A NASA photograph of the Voyager space probe, 1977. Photo: Wikimedia Commons

On September 5, 1977, NASA launched the Voyager 1 space probe to study the Jovian planets Jupiter and Saturn, and their moons, and the interstellar medium, the gigantic chasm between various star-systems in the universe. It’s been 35 years and 9 months, and Voyager has kept on, recently entering the boundary between our System and the Milky Way.

In 2012, however, when nine times farther from the Sun than is Neptune, the probe entered into a part of space completely unknown to astronomers.

On June 27, three papers were published in Science discussing what Voyager 1 had encountered, a region at the outermost edge of the Solar System they’re calling the ‘heliosheath depletion region’. They think it’s a feature of the heliosphere, the imagined bubble in space beyond whose borders the Sun has no influence.

“The principal result of the magnetic field observations made by our instrument on Voyager is that the heliosheath depletion region is a previously undetected part of the heliosphere,” said Dr. Leonard Burlaga, an astrophysicist at the NASA-Goddard Space Flight Centre, Maryland, and an author of one of the papers.

“If it were the region beyond the heliosphere, the interstellar medium, we would have expected a change in the magnetic field direction when we crossed the boundary of the region. No change was observed.”

More analysis of the magnetic field observations showed that the heliosheath depletion region has a weak magnetic field – of 0.1 nano-Tesla (nT), 0.6 million times weaker than Earth’s – oriented in such a direction that it could only have arisen because of the Sun. Even so, this weak field was twice as strong as what lay outside it in its vicinity. Astronomers would’ve known why, Burlaga clarifies, if it weren’t for the necessary instrument on the probe being long out of function.

When the probe crossed over into the region, this spike in strength was recorded within a day. Moreover, Burlaga and others have found that the spike happened thrice and a drop in strength twice, leaving Voyager 1 within the region at the time of their analysis. In fact, after August 25, 2012, no drops have been recorded. The implication is that it is not a smooth region.

“It is possible that the depletion region has a filamentary character, and we entered three different filaments. However, it is more likely that the boundary of the depletion region was moving toward and away from the sun,” Burlaga said.

The magnetic field and its movement through space are not the only oddities characterising the heliosheath depletion region. Low-energy ions blown outward by the Sun constantly emerge out of the heliosphere, but they were markedly absent within the depletion region. Burlaga was plainly surprised: “It was not predicted or even suggested.”

Analysis by Dr. Stamatios Krimigis, the NASA principal investigator for the Low-Energy Charged Particle (LECP) experiment aboard Voyager 1 and an author of the second paper, also found that cosmic rays, which are highly energised charged particles produced by various sources outside the System through unknown mechanisms, weren’t striking Voyager’s detectors equally from all directions. Instead, more hits were being recorded in certain directions inside the heliosheath depletion region.

Burlaga commented, “The sharp increase in the cosmic rays indicate that cosmic rays were able to enter the heliosphere more readily along the magnetic fields of the depletion region.”

Even though Voyager 1 was out there, Krimigis feels that humankind is blind: astronomers’ models were, are, clearly inadequate, and there is no roadmap of what lies ahead. “I feel like Columbus who thought he had gotten to West India, when in fact he had gone to America,” Krimigis contemplates. “We find that nature is much more imaginative than we are.”

With no idea of how the strange region originated or whence, we’ll just have to wait and see what additional measurements tell us. Until then, the probe will continue approaching the gateway to the Galaxy.

(This blog post first appeared on The Copernican on June 28, 2013.)