EUCLID/ESA: A cosmic vision looking into the darkness

I spoke to Dr. Giuseppe Racca and Dr. Rene Laureijs, both of the ESA, regarding the EUCLID mission, which will be the world’s first space-telescope launched to study dark energy and dark matter. For the ESA, EUCLID will be the centerpiece of their Cosmic Vision program (2015-2025). Dr. Racca is the mission’s project manager while Dr. Laureijs is a project scientist.

Could you explain, in simple terms, what the Lagrange point is, and how being able to study the universe from that vantage point could help the study? 

GR: Sun-Earth Lagrangian point 2 (SEL2) is a point in space about 1.5 million km from Earth in the direction opposite to the sun, co-rotating with the Earth around the Sun. It is a nice and calm point to make observations. It is not disturbed by the heat fluxes from the Earth but at the same time is not too far away to allow to send to Earth the large amount of data from the observation. The orbit around SEL2 that Euclid will employ is rather large and it is easy to reach (in terms of launcher capability) and not expensive to control (in terms of fuel required for the orbit corrections and maintenance manoeuvres).

Does Euclid in any way play into a broader program by ESA to delve into the Cosmic Frontier? Are there future upgrades/extensions planned? 

RL: Euclid is the second approved medium class mission of ESA’s Cosmic Vision programme. The first one is Solar Orbiter, which studies the Sun at short distance. The Cosmic Vision programme sets out a plan for Large, Medium and Small size missions in the decade 2015-2025. ESA’s missions Planck, which is presently in operation in L2, and Euclid will study the beginning, the evolution, and the predicted end of our Universe.

GR: A theme of this programme is: “How did the Universe originate and what is it made of?” Euclid is the first mission of this part of Cosmic Vision 2015-2025. There will be other missions, which have not been selected yet.

What’s NASA’s role in all of this? What are the different ways in which they will be participating in the Euclid mission? Is this a mission-specific commitment or, again, is it encompassed by a broader participation agreement?

GR: The NASA participation in the Euclid mission is very important but rather limited in extent. They will provide the Near-infrared detectors for one of the two Euclid instruments. In addition they will contribute to the scientific investigation with a team of about 40 US scientists. Financially speaking NASA contribution is limited to some 3-4% of the total Euclid mission cost.

RL: The Euclid Memorandum of Understanding between ESA and NASA is mission specific and does not involve a broader participation agreement. First of all, NASA will provide the detectors for the infrared instrument. Secondly, NASA will support 40 US scientists to participate in the scientific exploitation of the data. These US scientists will be part of the larger Euclid Consortium, which contains nearly 1000 mostly European scientists.

Do you have any goals in mind? Anything specific or exciting that you expect to find? Who gets the data?

GR: The goals of the Euclid mission are extremely exciting: in few words we want to investigate the nature and origin of the unseen Universe: the dark matter, five times more abundant than the ordinary matter made of atoms, and the dark energy, causing the accelerating expansion of the Universe. The “dark Universe” is reckoned today to amount at 95% of the total matter-energy density. Euclid will survey about 40% of the sky, looking back in cosmic time up to 10 billion years. A smaller part (1% of the sky) will look back to when the universe was only few million years old. This three dimensional survey will allow to map the extent and history of dark matter and dark energy. The results of the mission will allow to understand the nature of the dark matter and its position as part of an extension of the current standard model. Concerning the dark energy we will be able to distinguish between the so called “quintessence” or a modification necessary to current theories of gravity, including General Relativity.

RL: Euclid goals are to measure the accelerated expansion of the universe which tells us about Dark Energy, to determine the properties of gravity on cosmic scales, to learn about the properties of dark matter, and to refine the initial conditions leading to the Universe we see now. These goals have been chosen carefully, the instrumentation of Euclid is optimised to reach these goals as best as possible. The Euclid data opens the discovery space for many other areas in astronomy: Euclid will literally measure billions of stars and galaxies at visible and infrared wavelengths, with a very high image quality, comparable to that of Hubble Space Telescope. The most exiting prospect is the availability of these sharp images, which will certainly reveal new classes of objects with new science. The nominal mission will last for 6 years, but the first year of data will become already public 26 months after the start of the survey.

When will the EUCLID data be released?

GR: The Euclid data will be released to the public one year after their collection and will be made available to all researchers in the world.